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Abstract

We present the first experimental method to non-parametrically elicit

utility functions and associated measures of (higher order) risk prefer-

ences. The method yields well-known theoretically-derived utility-based

measures of intensities, such as the Arrow-Pratt measure for risk aver-

sion, and analoguous measures for prudence and temperance. Unlike

parametric alternatives, the method is free of assumptions about the

shape of the utility function, and particularly of the commonly made

but provenly inappropriate ones for the study of higher order risk pref-

erences. The method’s ability to account for decision errors is illustrated

in a simulation exercise, where it performs comparable to parametric

fitting techniques. In accompanying laboratory and online experiments,

we validate our method and find significant relations to other methods.

Finally, we apply our method in a sample of the poor population in Bo-

gotá, Colombia to test the precautionary saving model by Leland (1968).

We find strong support for the model by showing that income risk is

associated with increases in savings for prudent individuals.
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1 Introduction

Characterizing the utility function is a cornerstone of microeconomics and

has a long tradition in empirical economics (Deaton and Muellbauer, 1980).

Structural parametric approaches are typically applied to estimate key util-

ity parameters, such as the degree of risk aversion, or the degrees of the

higher order risk preferences prudence and temperance. While this approach

has proven suitable for modelling aggregate behavior, widely-used forms of

parametric utility functions, such as the power utility family, are not flexi-

ble enough to model behavior at the individual level (Abdellaoui, Barrios,

and Wakker, 2007; Holt and Laury, 2002). For the study of higher order risk

attitudes, none of the commonly used parametric utility functions is flexi-

ble enough to model individual behavior: The relation between intensities

of the different orders that are implied by the expo-power function and the

power function does not match empirical evidence (Noussair, Trautmann,

and Kuilen, 2014), and some combinations of (higher order) risk attitudes

that are repeatedly observed empirically cannot be described by these func-

tions (e.g., Deck and Schlesinger, 2010; Ebert and Wiesen, 2011, 2014; Maier

and Rüger, 2011).1

To overcome these liminations, we develop a non-parametric (experimen-

tal) elicitation method for utility functions that we use to compute associ-

ated intensity measures of risk preferences as applied in theoretical work:

the Arrow-Pratt coefficient of risk aversion, as well as the analoguous mea-

sures for prudence and temperance. We illustrate the characteristics of our

method in comparison to well-known parametric utility functions using sim-

ulations, and validate the resulting measures using (variants of) the estab-

lished risk apportionment method (Eeckhoudt and Schlesinger, 2006) in lab-

oratory and online experiments with several hundred participants. Finally,

we relate our measure of prudence to income risk and household saving of

a sample of 650 urban poor individuals in Bogotá, Colombia, and provide

support for theoretical models of precautionary saving going back to Leland

(1968), for which we provide an extension.

While risk aversion can be described as the extent to which individuals

dislike mean preserving increases in risks (Rothschild and Stiglitz, 1970),

prudence is the propensity to prepare and forearm oneself in the face of

1 In this respect, already Fuchs-Schündeln and Schündeln (2005) note that specifica-
tions generally allowing for risk aversion (risk seeking behavior) rule out combination with
imprudence (prudence). We derive these limitations in Appendix C for the exponential
(CARA), the power (CRRA) and the expo-power utility family.
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risks, i.e., the degree to which an individual reacts to risk if it enters the de-

cision situation (Kimball, 1990). Temperance in turn is the extent to which

individuals dislike additional risk in the presence of an uninsurable back-

ground risk. Both in theory and in empirical work, the relation of prudence

with precautionary saving has probably gained most attention (e.g., Dynan,

1993; Kimball, 1990; Leland, 1968; Noussair, Trautmann, and Kuilen, 2014).

There have been attempts to infer prudence parameters from observational

saving data (e.g., Dynan, 1993), or studies relating direct individual pru-

dence classification measures to savings (e.g., Noussair, Trautmann, and

Kuilen, 2014), but so far, no study has investigated the relation of income

risk, direct individual intensity measures of prudence, and saving. There-

fore, we use this application to illustrate our method—developed for, and

first used in this and its companion paper (Schneider and Sutter, 2021),

which focuses on the empirical relevance of higher order risk preferences

compared to other measures of risk preferences.

The method can take any mapping of experimentally elicited utility

levels as provided by, e.g., the certainty equivalent method, the trade-off

method (Wakker and Deneffe, 1996) or the lottery equivalent method (Mc-

Cord and Neufville, 1986), and provides an estimate of an unconstrained

smooth utility function. It builds on penalized-spline (P-spline) regression

(Eilers and Marx, 1996) to obtain a parameter-free estimate of a continuous

and p-times differentiable utility function including its derivatives from the

same model. To this end, we extend the toolbox of P-spline regression for

the needs of utility functions and incorporate value constraints, develop a

solution to jointly smooth different orders of derivatives, and establish a way

to determine a data-driven minimum for the smoothness parameter, which

in turn is the result of an optimization using machine learning methods.

The smooth utility functions and their derivatives allow constructing

measures of the intensity of (higher order) risk preferences—risk aversion,

prudence, temperance and higher orders—without imposing a relationship

between for example risk aversion and prudence or risk aversion and temper-

ance as commonly applied parametric forms do. Moreover, we can measure

intensities of higher order risk preferences without relying on the strong as-

sumption that the degree of a higher order risk preferences is reflected by

the consistency of choices, as often assumed using the standard risk appor-

tionment method (Deck and Schlesinger, 2010; Eeckhoudt and Schlesinger,

2006; Noussair, Trautmann, and Kuilen, 2014).
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The method we propose is the first one to experimentally elicit contin-

uous utility functions non-parametrically and to allow the non-parametric

computation of utility-based intensity measures; in particular the Arrow-

Pratt measure of risk aversion (Pratt, 1964), the intensity measures of pru-

dence by Kimball (1990) and Crainich and Eeckhoudt (2008) and the gen-

eralization of the latter measure to any order of risk preference—including

temperance—by Denuit and Eeckhoudt (2010).

We validate the measures resulting from our method in an online ex-

periment and in the laboratory. We relate the measures with the elicitation

methods by Noussair, Trautmann, and Kuilen (2014), Deck and Schlesinger

(2010), and Ebert and Wiesen (2014). We observe significantly correlations

with the compensation premia for prudence and temperance elicited with

the method by Ebert and Wiesen (2014). Moreover, we find that the num-

ber of prudent and temperant choices in the risk apportionment methods as

implemented by Deck and Schlesinger (2010) and Noussair, Trautmann, and

Kuilen (2014) significantly predicts our intensity measures, and it explains

up to about a third of its variation. This suggests that the count measure

resulting from risk apportionment choice tasks approximates higher order

risk intensities to a degree that might be deemed sufficient for certain appli-

cations.

Finally, since the relation between risk-seeking behavior, prudence and

savings remains unexplored, we provide an application of our method to test

the precautionary savings model due to Leland (1968). Using data from a

financial survey with a sample of 693 individuals living in Bogota, Colom-

bia, we use our method to estimate intensity of higher-order risk preferences.

The empirical evidence provides unique support for the investigated model

(Leland, 1968). There is a strong positive correlation between savings and

prudence and this relation becomes even stronger when we include an exoge-

nous measure of income risk—the ratio of shut-down to existing businesses

in 2013 in Bogotá in the sector an individual was usually employed.

Our study adds to the extended research on household savings by theo-

retically and empirically establishing the link between risk aversion, savings

and prudence. Previous studies used survey data to determine the share of

savings that is due to income risk and in that way assess the importance

of prudence (Dynan, 1993; Fagereng, Guiso, and Pistaferri, 2017a; Guiso,

Jappelli, and Terlizzese, 1992).However, those studies face the problem that

the data does not allow for separately identifying individual risk aversion

and prudence as they rely on parametric utility forms, where usually the

3



degree of risk aversion has an implication for the degree of prudence (see

Appendix B for an illustration of this point and its consequences). Our mea-

sures are free from such restrictive assumptions, and are thus ideally suited

for this application.

To deal with the limitations of inferring preferences—here in particular

prudence—from observed behavior another branch of studies began only rel-

atively recently using experimental measures of risk aversion, prudence and

temperance (Deck and Schlesinger, 2010; Ebert and Wiesen, 2011, 2014;

Maier and Rüger, 2011; Tarazona-Gomez, 2004). While those studies make

a methodological contribution in the measurement of prudence and tem-

perance, they focus on a student population and do not examine saving

decisions. A notable exception is Noussair, Trautmann, and Kuilen (2014),

who investigate financial-decision making in the general Dutch population.

However, they—and most of the previously mentioned studies—face the

problem that the risk-apportionment tasks that they apply cannot inform

about theory-based intensity measures of prudence but simply classify indi-

viduals as prudent or imprudent and similarly for temperance. We provide

measures of prudence and temperance from a non-student sample in a de-

velopment context, thereby extending the work of Cardenas and Carpenter

(2013) to higher order risk preferences. In addition, our study provides in-

tensity measures of higher order risk preferences, which have never been

(properly) measured with an adult population outside the laboratory.

An exception among the studies measuring higher order risk preferences

is also Ebert and Wiesen (2014), introducing a method that builds on risk

apportionment tasks, but asks for the compensation premium that makes

individuals indifferent between the prudent (temperant) option and the im-

prudent (intemperant) one plus the premia. We add to this literature by

presenting the first method to elicit theoretically-derived utility-based in-

tensity coefficients of (higher order) risk preferences, such as the analoguous

measures to the Arrow-Pratt measure for risk aversion. Our method is easy

to understand for subjects and parsimonious with respect to the number of

choice tasks needed. Moreover, it yields the intensity measures used in the-

oretical work, and thus opens up completely novel opportunities for theory

testing.

The rest of the paper is organized as follows: Section 2 gives an overview

over higher order risk preferences, and Section 3 explains the non-parametric

method for the elicitation and estimation of the utility functions, including

the derived intensity measures. Section 4 illustrates some key characteristics
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Figure 1. An Abstract Lottery Pair for Elicitation of Prudence

of the method in simulations, while Section 5 presents the validation study.

Section 6 finally presents the application study, and Section 7 concludes the

paper.

2 Theoretical Background

With the behavioral definitions of prudence, temperance and even higher

orders of risk preferences introduced by Eeckhoudt and Schlesinger (2006)

an easy and concise way to measure those attitudes experimentally has been

established. While we rely on the classical definitions of higher order risk

preferences, the behavioral definitions have evoked a renaissance of at least

prudence in mainstream empirical economics and the resulting elicitation

method has become the canonical method for higher order risk preferences.

We briefly summarize the behavioral as well as the classical definitions and

the experimental toolbox related to higher order risk preferences.

Risk Aversion
Consider the mean-zero variable ε, independent of any other variable affect-

ing an individual’s initial wealth level x, and a deterministic reduction of

wealth of size k, k > 0. Define the lotteries B2 = [0] as receiving an amount

of 0 for sure, and A2 = [ε] as receiving ε with probability 1. With that no-

tation, an individual is risk averse if and only if A2 is preferred over B2 for

all initial wealth levels x and for all k and all ε.

Eeckhoudt and Schlesinger (2006) show that this definition coincides

with the classical definition in an expected utility framework: A negative sec-

ond derivative of the von-Neumann-Morgenstern utility function, i.e. u′′ < 0,

assuming u twice differentiable, is equivalent to risk aversion. Obviously, it

is also equivalent to aversion of mean-preserving spreads (Rothschild and

Stiglitz, 1970), or, in the more general terminology of stochastic dominance

due to Ekern (1980), an aversion to second degree risk.
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The classical measure for the degree of risk aversion is the Arrow-Pratt

measure r = −u′′/u′, and Pratt (1964) shows that, when comparing two in-

dividuals, the individual with the globally higher degree of risk aversion will

always have the higher risk premium, where also the reverse is true. Locally,

that is, for a fixed level of wealth, and for small risks, r is proportional to

the risk premium. More precisely, r is the risk premium times twice the

inverse of the variance for an infinitesimal, mean-zero risk.

Prudence
As for risk-aversion, we consider two lotteries: Define B3 = [−k, ε] and

A3 = [ε− k, 0], where the two entries in the brackets represent the two

equiprobable outcomes of the lotteries. If for all x and all k and all ε, B3 is

preferred over A3, the individual is defined as prudent.

In the classical expected utility characterization, this is equivalent to

u′′′ < 0, i.e., marginal utility being a convex function, assuming u is suffi-

ciently differentiable (Eeckhoudt and Schlesinger, 2006).

Already the seminal work by Leland (1968) and Sandmo (1970) linked a

positive third derivative of the von Neumann-Morgenstern utility function

to a demand for precautionary savings. In further developments, Kimball

(1990)—who also coined the term “prudence”—introduced −u′′′/u′′ as a

measure for the intensity of prudence that indicates the strength of the pre-

cautionary saving motive in a two-period model of consumption and saving.

Via the characterization of the utility function, prudence is also equiv-

alent to downside risk aversion as defined by Menezes, Geiss, and Tressler

(1980). It is moreover equivalent to third-degree risk aversion in the more

general framework by Ekern (1980). Thus, the measure u′′′/u′, originally a

measure for the degree of downside risk aversion becomes interesting, espe-

cially as it is defined independently of the second derivative of the utility

function. Crainich and Eeckhoudt (2008), building on earlier work by Mod-

ica and Scarsini (2017) and Keenan and Snow (2002), advocate for this

measure and show that it is proportional to both, a premium m paid in

the best states of the world to compensate for the misalignment of “harms”

in A3, i.e., Ã3 = [ε+ k,m], and the utility premium, i.e., the difference of

utility between A3 and B3, in monetary equivalents.

Moreover, u′′′/u′ is also a measure of skewness aversion: Modica and

Scarsini (2017) show that the increase in premium that is due to an increase

in skewness is proportional to this measure. This is particularly interesting,

as Holzmeister et al. (2019) in a large-scale survey experiment with more
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than 2,000 finance professionals and more than 4,000 lay people in nine coun-

tries find that skewness drives investors’ risk-perception, whereas variance

does not influence their perception of risk. Thus, in light of these results, if

a good measure for the willingness to accept financial risks is needed, u′′′/u′

is likely to be a very good candidate.

In Appendix A, we show that this measure is a rationale for the inten-

sity of the precautionary demand for saving, building on the—compared to

Kimball (1990)—more general framework of saving and consumption by Le-

land (1968). In particular, one prediction emerging from our model is that

also risk lovers may save a non-trivial fraction of their income proportional

to the intensity measure of prudence u′′′/u′, which extends the finding by

Crainich and Eeckhoudt (2008) in the direction of allowing risk lovers to

save a non-trivial fraction of their income—proportional to the measure of

prudence u′′′/u′.

Temperance
Instead of the deterministic reduction of wealth −k, and in addition to

the first mean-zero variable ε1, consider a second mean-zero variable ε2,

independent of ε1. Define the lotteries B4 = [ε1, ε2] and A4 = [0, ε1 + ε2].

An individual is temperant if lottery B4 is preferred over A4 for all x and

all εi, i = 1, 2.

As for prudence, temperance can be characterized via a negative fourth

derivative of the utility function in an expected utility setting: u(iv) < 0

equals temperance, thus temperance equals an aversion to fourth-degree

risk.

A measure for temperance or equivalently for a dislike of fourth-order

risk as defined by Ekern (1980) is proposed by Denuit and Eeckhoudt (2010),

who extend the work by Modica and Scarsini (2017) from third-order risk to

arbitrary orders. The intuition of that measure, (−1)n+1u(n)/u′, is that the

premium for a risk that has more nth degree risk than another risk, which

is equal in all other aspects, should be the higher one, if an agent dislikes

that increase. They show that their proposed measure is proportional to the

increase in premium due to the increase in nth degree risk; in particular this

is of course true for fourth-order risk and the measure −uiv/u′ is a measure

for temperance and dislike of kurtosis alike.

Higher-Order Preferences
Higher order preferences of any order can be defined similarly using prefer-
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ences over pairs of lotteries with an iterative construction algorithm (Eeck-

houdt and Schlesinger, 2006; Eeckhoudt, Schlesinger, and Tsetlin, 2009).

Deck and Schlesinger (2014) have studied fifth-order and sixth-order atti-

tudes experimentally and note for the latter that “behavior at this order

is approaching random choice” and conclude that focusing on the first four

orders seems reasonable.

Elicitation of Intensities of Higher Order Risk Preferences
Whereas the elicitation method building on preferences over pairs of binary

lotteries allows classifying individuals according to their risk type for each

order, theoretical measures of intensity of higher order risk preferences can-

not be inferred from these choices without relying on parametric estimation.

Following earlier work in the risk literature, Deck and Schlesinger (2010)

and Noussair, Trautmann, and Kuilen (2014) argue that decision errors are

less likely the stronger the attitude is pronounced and interpret the num-

ber of prudent (temperant) choices in above defined lotteries as measure of

strength. Yet, little is known whether this is a reasonable approximation,

in particular also because few real-world implications of higher order risk

preferences have been studied empirically, with the notable exception of

Noussair, Trautmann, and Kuilen (2014).

Mirroring the idea of the risk premium, which may be used as a straight

forward measure of risk aversion, Ebert and Wiesen (2014) introduce a

method based on risk apportioning to elicit intensities via premia—the pre-

mia that individuals ask for in order to accept the imprudent or the intem-

perant option. While this method—originally implemented with 5 choice

lists of 20 comparisons each—allows the elicitation of prudence and temper-

ance intensities, utility-based coefficients such as the Arrow-Pratt coefficient

of risk aversion, the intensity measures of prudence by Kimball (1990) or

the one advocated for by Crainich and Eeckhoudt (2008) or the coefficient

of temperance by Denuit and Eeckhoudt (2010) cannot be derived, unless

again relying on parametric estimation.

Mixed Risk Averters And Precautionary Saving
Building on work by Eeckhoudt, Schlesinger, and Tsetlin (2009) on “mixed

risk averters” who like to combine good with bad outcomes, Crainich, Eeck-

houdt, and Trannoy (2013) elegantly demonstrated the equivalence between

a preference for combining good with good outcomes and a positive second,

third and fourth derivative, corresponding to risk loving, prudent and in-
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temperant behavior; this pattern they attribute to “mixed risk lovers” who

agree with mixed risk averters on the sign of uneven derivatives, but dis-

agree on even derivatives. Using a simple two period-model assuming time-

separable utility, they show that prudent risk lovers devote all their income

to saving in the presence of a future income risk. Empirical support for the

existence of mixed risk averters and mixed risk lovers is given by Noussair,

Trautmann, and Kuilen (2014), who study the prevalence of risk aversion,

prudence and temperance in a student sample and the general population

in the Netherlands. They find about 15 percent of their sample showing risk-

loving behavior, and that “prudence is more prevalent than temperance”.

What is more, they find that “[t]he degree of temperance seems to be

more closely related to the degree of risk aversion than prudence is”. In

their student sample, the rank correlation between prudence and risk aver-

sion is not significant (and negative), while the rank correlation between

risk aversion and temperance is significant and positive.2 Although they

pool risk-averse and risk-loving subjects in their analysis, they find a strong

connection between prudence and saving and wealth, which is robust to

controlling for risk aversion levels and temperance, suggesting that this con-

nection also holds for the 15 percent showing risk-loving behavior. However,

results are not presented for the risk-loving and the risk-averse sub-samples

separately.

When considering risk lovers while investigating the relationship be-

tween prudence and saving, the intensity measure of prudence put forward

by Kimball (1990), −u′′′/u′′ is inapplicable; instead, u′′′/u′, the measure

advocated for by Crainich and Eeckhoudt (2008) has to be applied.

3 Methodology

In this section, we introduce the procedure for the joint elicitation of (higher

order) risk preferences. To this end, we combine well-established methods to

elicit utility points with the statistical approach of P-spline regression. The

experimental elicitation and estimation procedure consists of the following

three steps:

2 When pooling student sample and the general population, both rank correlations are
positive and significant, however, the correlation between risk aversion and prudence is still
lower than that between risk aversion and temperance. Moreover, temperance significantly
increases with risk aversion, which is not the case for prudence.
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1. Elicitation of utility points using any suitable method, such as the cer-

tainty equivalent method or the trade-off method (Wakker and Deneffe,

1996).

2. Estimation of differentiable, individual utility functions and their deriva-

tives based on elicited utility points using penalized spline (P-spline)

regression approach (Eilers and Marx, 1996) tailored to our needs.

3. Derivation of higher order risk preference (intensity) measures based on

differentiable utility functions at the individual level.

For its non-parametric character, this procedure can be seen as the nat-

ural completion of non-parametric elicitation methods for utility points to

a non-parametric elicitation method for utility functions.

3.1 Elicitation of Utility Points

In the expected utility (EU) framework, one established method to non-

parametrically elicit utility points is the trade-off method (Wakker and Den-

effe, 1996), which we will use to illustrate our procedure.3 The method elicits

payoffs xi that imply indifference between two outcome gambles. Denote a

binary lottery with (x, p; y), where x is the upside, occurring with proba-

bility p > 0 and y is the downside with corresponding probability (1− p).
The participant first states the value x1 that makes her indifferent between

(x1, p; r) and (x0, p;R) where x1 > x0 and R > r. Then the participant is

asked for the value x2 > x1 that makes her indifferent between (x2, p; r) and

(x1, p;R). Assuming EU, and denoting the utility4 of a monetary outcome

x with U(x), these two indifferences imply that:

pU(x1) + (1 − p)U(r) = pU(x0) + (1 − p)U(R) and

pU(x2) + (1 − p)U(r) = pU(x1) + (1 − p)U(R).

From these equations, we derive

p(U(x1) − U(x0)) = (1 − p)(U(R) − U(r)) = p(U(x2) − U(x1)).

3 Note that for the elicitation of utility functions as introduced in this paper, it is also
possible to use the less complex certainty equivalent method (see below) or the probability
equivalent method.

4 Note that for this method, no further specification of the utility function is needed.
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Since p > 0, we can conclude that

U(x1) − U(x0) = U(x2) − U(x1).

This equality of utility differences yields utility points and by repeating

this iterative process one can elicit the desired number of utility points.5

Note that in cases subjective probability distortions are of less concern

or when the trade-off method might be too complex, certainty equivalents

can be elicited by specifying p, usually setting p = 0.5 and by asking for the

value xp ∈ (xmin, xmax) that makes the decision maker indifferent between

receiving (xmin, p;xmax) and xp. If we normalize U so that U(xmin) = 0 and

U(xmax) = 1, then the elicited indifference means pU(xmax) = p = U(xp),

and in case p = .5, x.5 is the utility mid-point between xmin and xmax.

3.2 P-Spline Interpolation and Error Correction for Utility Functions and
Their Derivatives

How do penalized spline (P-spline) regressions connect these utility points?

A first non-parametric approach is linear interpolation (see e.g., Abdellaoui,

2000; Abdellaoui, Bleichrodt, and Paraschiv, 2007; Etchart-Vincent, 2004;

Fennema and Van Assen, 1998). This approach is suited if distances be-

tween subsequent utility points are small, decision or measurement errors

are unlikely, precision of interpolation is of lower priority, and if enough

points are elicited. It is relatively ‘costly’ in terms of the required points per

derivative, e.g., for computing a fourth derivative, at least five utility points

are required. Moreover, and important for applications, linear interpolation

generally does neither establish a differentiable function nor account for de-

fectively elicited points (due to measurement or decision errors).

Penalized spline regression establishes differentiable functions by

smoothing the data in a ‘global’ way, thus incorporating all information

available. As introduced here, this results in estimates for the utility func-

tion and its derivatives in one single fit. Therefore, there is no need to addi-

tionally smooth the derivatives or compute them numerically. Similar to the

parametric approach, this method is parsimonious. One point between the

fixed limit points is enough to determine the sign of the third derivative.

5 This procedure can be extended to elicit utility on the loss domain, to elicit probability
weighting (both in the gain and the loss domain) and to elicit loss aversion, as suggested
by Abdellaoui (2000) and Abdellaoui, Bleichrodt, and Paraschiv (2007).
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Spline Regression Spline regression generalizes the concept of a conven-

tional linear regression. Instead of using only the x-values of elicited utility

points in a regression, also higher powers of those values are added—up to

degree p. Moreover, and contrarily to polynomial regression, the coefficients

on those ‘basis functions’ (i.e., 1, x, x2, x3, . . . , xp) are allowed to vary be-

tween pre-defined subintervals of the interval of interest.6 This is achieved

by exchanging (or extending) the global basis for a local basis, that is a

set of basis functions that are only piecewise defined (i.e. each of them is

different from zero only on a certain subinterval of the interval of interest).

The result—i.e., the estimated function—is a smooth combination of

piecewise polynomial functions of degree p, that is, with common imple-

mentation, (p− 1) times continuously differentiable. Figure 2 shows an ex-

emplary local basis (called B-spline basis) with three subintervals and a re-

gression on these basis functions, where for illustration the basis functions

are scaled by the corresponding regression coefficients.7

Although spline regression possesses several advantages over other func-

tion fitting techniques, one challenge is that the fitted curve depends on

the choice of the boundaries (called knots) of the subintervals on which the

local basis functions are defined.8 An additional challenge is the degree of

the function to be fitted: To obtain a p− 1 times continuously differentiable

curve, one needs B-spline basis functions of degree p. Thus, in order to have

the fourth derivative at least quadratic, B-spline basis functions of degree 6

are necessary. With barely more than 6 elicited utility points, a pure spline

regression approach with local bases of degree 6 is impossible.

6 Polynomial regression and interpolation, which leads to an estimated polynomial func-
tion of order p, roots in the strong theoretical foundation of the Stone-Weierstrass theorem.
The Stone-Weierstrass theorem states that every real, continuous function defined on a
closed interval can be uniformly approximated arbitrarily close by a polynomial function.
In practice, however, the order is limited by available data points and the data will be
underfit. Furthermore, even when the order of polynomial functions is high, interpolation
quality can be very poor for some functions (e.g., Runge’s phenomenon, see Runge, 1901)
and at the boundaries of the interval under study, the interpolation function becomes
unstable. In general, a global basis approach often lacks the flexibility to adequately ad-
just the degree of curvature to different, possibly asymptotically constant regions. The
resulting function would thus in many cases either underfit or overfit the data.

7 A short introduction to spline regression using a B-spline basis is given in Ap-
pendix D.1; for more details see De Boor (1987).

8 More specifically, a higher amount of knots allows a higher flexibility, which, however,
sometimes results in overfitting the data. Moreover, knot placement also influences the
fitted curve considerably.
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(a) B-spline Basis of Degree p = 2 (b) Regression on a B-spline Basis

Figure 2. Illustration of Simple (Non-Penalized) Spline Regression with B-splines of
Second Degree Where the Interval [0, 1] is Divided Into Three Intervals

P-spline Regression P-spline regression (Eilers and Marx, 1996) solves these

challenges and in addition to smoothing the utility function itself (as spline

regression also might do), it smoothens at least one derivative. P-spline

regression combines the regression approach on a B-spline basis using an

excessive number of (usually equally spaced) knots (i.e. B-spline basis func-

tions) with penalties (usually on the curvature) to prevent the fitted curve

from oscillating or fluctuating more than needed when allowing for a high

flexibility by choosing a large amount of knots.9 Technically, these penal-

ties increase the number of conditions for the equation system to solve, and

hence higher degrees can be combined with choosing a high amount of knots.

Formally, the d-order differences of the B-spline coefficients are penalized

by adding these differences to the objective function. We will refer to this

summand as the dth-order penalty. When Dd denotes the matrix represen-

tation of the dth difference operator 4d defined as 4daj := 4(4d−1aj) with

4aj := (aj − aj−1), the objective function of the P-spline regression writes

QB(α) = ‖y − Bα‖2 + ω‖Ddα‖2, (1)

9 When introducing P-splines, Eilers and Marx state that generally the number of B-
splines is moderate (10-20). In more recent work, they note that “the size of the basis can
be anywhere from 10 to over 1000”, depending on the application (Eilers and Marx, 2010).
In our application, using 15 inner knots leads to under-fitting in a considerable share
of cases, which is why we chose 20. This choice leads to the desired flexibility without
overfitting the data.
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where the goal is to minimize QB by choice of α. As with conventional

spline regression using a B-spline basis, the design matrix B consists of

the k + p− 1 B-splines evaluated at the x-values of the N given data

points from one individual (see Appendix D.1 for details), and y de-

notes the vector of length N containing the respective y-values, i.e. util-

ity levels in our setting. The objective function (1) is minimized by α̂ =

(B′B + ωD′dDd)
−1
B′y.

The non-negative tuning parameter ω allows controlling the smoothness

of the predicted function. Choosing ω = 0 results in the classical linear re-

gression of y on B as formulated for example in (15) in Appendix D.1, with

the well-known solution â = (B′B)−1B′y. Therefore, as laid out above, a

low value of ω will result in a fitted function that overfits the data and pos-

sibly oscillates considerably. Depending on the order of the penalty, a linear

(d = 2) or quadratic (d = 3) or more general, a polynomial function of order

d− 1 will be the result in the limit of an increasing ω (Eilers and Marx,

2010).

Choice of the Penalty Term In this study—and more generally in the context

of the elicitation of higher order risk preferences—interest lies in smooth-

ing the utility function itself, but also in smoothing the third and possibly

higher derivatives of the utility function. Moreover, we would like to have

a continuous utility function with continuous derivatives with a suitable

interpolation quality at least for the derivatives of interest.

Here, we use an approach to jointly smooth the third and fourth deriva-

tive, suited for the joint elicitation of prudence and temperance, which is

defined by a negative fourth derivative. This requires the balanced use of

penalties of orders d = 3 and d = 4, as laid out in Appendix D.3. Penaliza-

tion of multiple orders has been applied before in the P-spline literature,

remarkably in studies with a focus on the quality of interpolation (in chem-

istry for signal regression and to predict temperature based on ozone levels,

see Aldrin, 2006; Marx and Eilers, 2002). However, both studies rely on

visual inspection for determining the relation between the two penalties.

Therefore, we develop a data-driven approach to jointly use multiple orders

of penalties, which we present in Appendix D.3 together with the details on

its implementation and on the choice of the penalty orders.

Shape Constraints Monotonicity, or more precisely, utility as a monotone

increasing function of monetary units, is a common assumption for util-
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ity functions. We follow the approach introduced by Bollaerts, Eilers, and

Mechelen (2006) to incorporate a monotonicity constraint in P-splines re-

gression. In the spirit of P-splines, this constraint is approximately enforced

using a discrete, asymmetric penalty. We elucidate this approach and its

implementation in Appendix D.4.

Value Constraints Due to using the certainty equivalent or the trade-off

method for elicitation of utility, the points (0, 0) and (1, 1) are fixed and

non-defective. They should therefore be exactly predicted, thus the inter-

polating spline function has to meet the following conditions: f(0) = 0 and

f(1) = 1. To our knowledge, to date there exists no solution for this in the

P-Spline literature. In the spirit of the penalty idea behind P-splines and

the implementation of the shape constraint above, we implement these con-

straints by iteratively increasing weights at the points x = 0 and x = 1, thus

increasing the penalty on deviations from this points until the conditions are

(approximately) met.10

3.2.1 Choosing the Degree of Smoothness. With perfect fidelity to the data

and only few data points, the fitted P-spline function generally might still

resemble a linearly interpolated function. In some cases though, it will os-

cillate heavily and fail to describe the true overall shape of the function.

These cases are examples of overfitting: Fidelity to the data is high, but the

quality of predictions is most likely poor. On the other hand, when smooth-

ness is overweighted, the resulting function might miss important changes

in curvature and also fail to describe the overall shape of the function, i.e.

the function is underfitting the data.

Choosing the Degree of Smoothness by Optimizing Predictive Quality When

studying intensities, the precise shape of the utility curve and its deriva-

tives are needed. Then, we wish to have a curve that perfectly balances

smoothness and fidelity to the data. How should we choose a value for ω,

the smoothing parameter or penalty weight? We apply a leave-k-out cross

validation (CV)—an objective data-driven decision criteria that focuses on

the quality of prediction and that is robust to overfitting the data in case of

10 The same effect can probably be realized with a penalty term in an iterative approach
such as the one presented by Bollaerts, Eilers, and Mechelen (2006) to incorporate shape
constraints. However, the existence of a solution to the minimization problem for the
modified objective function has to be investigated, see Bollaerts, Eilers, and Mechelen
(2006).
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correlated observations (Arlot and Celisse, 2010, Chapter 8.1).11 Using cross

validation, the model is fit with only a part of the data and the remainder,

the k points left out, is used to compute prediction errors. According to

CV, the smoothness parameter that minimizes the average prediction error

is the preferred one.

Leave-k-out CV can be seen as a mean of error correction: The more

points left out when fitting the model, the more important becomes the

predictive quality and the higher the smoothness parameter will be, in case

some points deviate from the common trend. Since reversal rates of one

third are common in choice tasks as the ones applied in this study,12 we per-

form ‘leave-at-least-1/3N -out’ cross validation, which results in leave-3-out

CV, in case the maximum number of utility points was elicited for the indi-

vidual under study.13

However, overfitting the data is still possible, if the distance between

points is large, that is in case of sparse information per knot. The reason is

that the penalized derivative of the function can change over wide intervals,

thus the change needed from knot to knot to predict every point exactly may

only be marginal, and is thus not sufficiently penalized. Therefore, we de-

velop and apply a way to determine a data-driven minimum for the penalty

parameter to rule out this reason of overfitting. We discuss our choice of the

data-driven decision criteria and present the developed approach to rule out

overfitting in case of sparse information per knot in Appendix D.5.

3.3 Intensity Measures of Risk Aversion and Prudence

Having established continuous utility functions from the elicited utility

points, we can now apply well-known intensity measures of risk aversion

and prudence.

Degree of Risk Aversion We measure the degree of risk aversion by the well-

known and widely used Arrow-Pratt measure of (absolute) risk aversion,

defined as ρ(x) = −u′′(x)/u′(x) (Pratt, 1964). For this measure, we compute

the mean over the interval [0, 1] based on 1000 points.

11 Due to the chain structure of the experiment applied, the measurement error of single
utility points might be correlated.

12 See e.g., Abdellaoui (2000), Abdellaoui, Bleichrodt, and Paraschiv (2007), Etchart-
Vincent (2004), and Fennema and Van Assen (1998).

13 Note that we excluded the points (0, 0) and (1, 1) for computing the average prediction
error.
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Naturally, steep increases are associated with a higher intensity than a

constant, slow increase. We therefore summarize the measure of risk aver-

sion over the interval [0, 1] by taking its mean to capture such steep parts of

the second derivative, even if vast parts of this derivative are actually zero.

The median in such a case would be zero, which certainly is not the right

measure of risk aversion in comparison with individuals exhibiting a steady,

but slow increase in the measure of risk aversion.

Degree of Prudence We compute the measure by Kimball (1990), commonly

stated as −u′′′/u′′, for (strictly) risk-averse individuals and π = u′′′/u′, the

measure by Crainich and Eeckhoudt (2008), for all individuals. As for the

degree of risk aversion, we aggregate this information by averaging these

measures over the interval [0, 1].

4 Measurement Error, Error Propagation and Error
Correction

To inform about the characteristics of the proposed method with respect

to measurement error, its sensitivity to error propagation and its ability

to correct decision errors made by participants, we conduct a simulation

exercise. We assume the true intensity measures to be known, as we assume

that utility follows a well-known and well-studied parametric form, the so-

called expo-power utility (Abdellaoui, Barrios, and Wakker, 2007; Holt and

Laury, 2002). In this case, the intensity measures are directly linked to the

parameters of the utility function.

We focus on, and limit our scope to risk aversion in this simulation for

two reasons: First, commonly used parametric utility forms are not suited

to study higher order risk preferences (Noussair, Trautmann, and Kuilen,

2014). Therefore, there is no simple or straight-forward way to simulate a

data generating process or true shape of the utility curve when consider-

ing intensity measures of prudence or temperance. When investigating error

propagation or error correction with our method, however, a “true” utility

curve or at least utility points are required as a starting point. To investi-

gate risk aversion, the power or the expo-power family are fairly standard

and widely used (see, e.g., Abdellaoui, Barrios, and Wakker, 2007; Holt

and Laury, 2002). This is not only helpful for simulating the “true” util-

ity curves, but also to have an alternative benchmark model to pitch our

method to. Second, the intensity measures of prudence and temperance re-
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sulting from our method are constructed analoguously to the Arrow-Pratt

measure of risk aversion, and in particular, result from the same estimated

utility curve. It is thus fair to assume that measurement error, error prop-

agation or error correction affect intensity measures of higher order risk

preferences analoguously. Therefore, focusing on risk aversion offers a clean

approach of simulating the data generating process, and is in addition suffi-

cent to illustrate these characteristics of the method.

4.1 Simulation Design

We generate data according to the expo-power utility function, u(x) =

(1− exp(−αx1−r)/α−1. The expo-power function matches empirical evi-

dence better than the power function, as it allows the combination of in-

creasing relative risk and decreasing absolute risk aversion (e.g., Holt and

Laury, 2002). In addition, it is an attractive choice since it is more flex-

ible than the one-parameter power function, u(x) = x1−r(1− r)−1, which

implies constant relative risk aversion.

We draw parameters a and r of the expo-power function from normal

distributions, with mean values and standard deviation informed by aggre-

gate estimates of these parameters in the literature. We draw 500 values

of r and a according to the estimates in Noussair, Trautmann, and Kuilen

(2014), as they result from studying higher order risk preferences as well,

and in addition from a general population. Additional 500 values of r and

a are drawn according to the estimates reported in Holt and Laury (2002),

for being, to our knowledge, the first study reporting estimates of the expo-

power family, and in order to have lower values of risk aversion represented

in the simulation as well.

We then determine the “true” certainty equivalents for all the lotteries

used to elicit utility points with the certainty equivalent method, and chose,

for every certainty equivalent, the one that comes closest to the “true” cer-

tainty equivalent from the list of the possible values of certainty equivalents

after three “staircases” (iterations of the bisection approach).

Based on these utility points, we then fit the utility curve using our

method, the power utility function, and the expo-power family. Finally we

compute the Arrow-Pratt measure as described above using our method,

or using the obtained parameters of the two parametric functions. For the

power family, the Arrow-Pratt measure of absolute risk aversion is given

by ARCRRA = rx−1, and for the expo-power family, it is ARExpo-Power =
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rx−1 + ((1− r)α)x−r. Just as for our method, we evaluate these measures

for 100 evenly spaced monetary values in the interval from 0 to 140 to span

the full range of incentives used, and then take the average.

4.1.1 Measurement Error. For this simulation exercise, we denote with

measurement error the loss compared to perfect correlation in the correla-

tion coefficient between (i) the intensity measure corresponding to the true

shape of the utility curve, and (ii) the intensity measure obtained through

elicitation of utility points using certainty equivalents in combination with

one of the considered interpolation strategies to estimate utility functions.

By assuming that the data generating process follows a parametric function

– the expo-power function – with certain parameters, we are able to com-

pute average Arrow-Pratt and higher order risk intensity measures without

any measurement error, simply by plugging in the drawn parameters in the

given formulas for AR, and averaging over the levels of wealth. In case this

true measure would be obtained after utility point elicitation and subse-

quent estimation of the utility function with one of the considered methods,

the correlation coefficient would be 1. Any deviation in the correlation coef-

ficient from 1 can thus be attributed to measurement error.

4.1.2 Error Propagation. In general, iterative elicitation methods might

suffer from error propagation, that is, a decision or measurement error at an

early stage of the elicitation procedure carries over to later stages, and thus

enters the final measurement several times. For example, in the certainty

equivalents method, the certainty equivalent corresponding to a utlity of

u = 0.5 will be used as high and low lottery outcome in subsequent choice

tasks. If this value is measured with an error, it will have consequences for

later stages as well, and thus affect the final intensity measure in various

ways. Yet, iterative methods such as the bisection or staircase method have

been praised for higher precision to begin with, as they lower the cogni-

tive demand required by participants. In particular in development settings,

with children, or with non-standard participant pools in general, this might

be of non-negligible importance. Ex ante, it is thus unclear which effect will

be dominating, as this will – to a large degree – depend on the sample.

Nevertheless, it might be useful to derive a possible upper bound of mea-

surement error: It is arguably not very likely that every participant makes a

mistake at the very first stage of the procedure. Thus, most likely, measure-

ment error imposed by error propagation will be smaller, and we therefore

use this scenario as worst case scenario to create a possible upper bound of
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Table 1. Simulation Results: Measurement Error, Error Propagation and Error Correction

ARExpo-Power ARCRRA ARLinear ARSchneider et al.

Correlation ρ with ARDGP 0.95 0.97 0.37 0.96
∆ in ρ caused by error 0.04 0.00 0.38 0.00

Notes: This table shows in the first row the Pearson correlation coefficients between the
“true” Arrow-Pratt measure of risk aversion according to the assumed data generating
process, ARDGP, and the Arrow-Pratt measures obtained via elicitation of certainty equiv-
alents and subsequent estimation of a utility curve according to the respective methods.
The entries in the second row denote the difference between the correlation coefficients in
the first row and correlation coefficients obtained when (simulated) measurement error is
introduced.

measurement error due to error propagation for each method to estimate a

utility curve.

4.1.3 Error Correction. Least squares methods, linear and non-linear, min-

imize the total sum of squares. This means that their predictions result in

the overall best fit given all the information available, without focusing too

much on a single observation. For utility curves, this means that the over-

all shape of certainty equivalents is relevant for determining the predicted

utility function, or equivalently when fitting a parametric curve, for esti-

mating the parametric function’s parameter. This feature thus allows error

correction to a certain degree, as a single certainty equivalent that does not

perfectly fit to the overall shape suggested by the other certainty equiva-

lents will not change the fitted curve too much (as opposed to, e.g., linear

interpolation). As the method we suggest is a least squares method as well,

combined with a penalty for flexibility, it shares this feature with parametric

utility functions that are fitted using a non-linear least squares approach. By

estimating a utility curve with our method based on erroneous data, gener-

ated as described above, and fitting the two discussed parametric functions

to the same data, we can compare the methods with respect to their ability

to correct for minor to medium decision errors.

4.2 Simulation Results

We start by assessing measurement error due to elicitation of utility points

and subsequent prediction of a utility curve based on these points using the

different prediction methods. For each of the 1000 draws of a parameter pair

for the expo-power utility curve, we compute the “true” Arrow-Pratt mea-

sure of risk aversion. Likewise, for each of these draws, we build Arrow-Pratt
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measures as described above. We then estimate the (Pearson) correlation

with the “true” measures – the higher the correlation coefficients, the lower

the measurement error. Results are reported in the first row of Table 1. Gen-

erally, with exception of linear interpolation, the approaches work well with

correlation coefficients of up to 0.97 for the CRRA function, despite being

more restrictive than the actual data generating process (for depending on

one parameter only). Maybe a bit surprising, the expo-power function per-

forms worse than the CRRA function. This suggests that the shape of the

curve is less sensitive to substitution effects between the two parameters de-

termining its form than the Arrow-Pratt measure is. Our method performs

comparable to the two well-known methods, despite its greater flexibility

and ability to incorporate prudent risk seekers and risk averters alike. That

is, the flexibility in our method does not come at the cost of precision in the

sense of lower measurement error.

How does error propagation affect the measurement error, and to which

degree are the interpolation methods able to smoothen out these mistakes,

thus correct these errors? We compute Arrow-Pratt measures for every

method and every draw of parameter pairs, where now the elicited certainty

equivalents are defective, as described above. We estimate (Pearson) corre-

lation coefficients with the true Arrow-Pratt measures, and compare these

coefficients with those obtaine before, i.e., without assuming decision errors

in the first decision stage. This difference, which is the sum of error propa-

gation and error correction, is reported in the second row of Table 1. The

CRRA and our method perform best, without any difference in the first two

digits of the correlation coefficients. The expo-power function still performs

relatively well, but here again, we note that the Arrow-Pratt measure based

on the parameters of the expo-power function seems to be more sensitive to

changes in these parameters, relative to the shape of utility.

4.3 Summary

In total, we have seen that our method performs comparable to two well-

known and widely used parametric utility functions with respect to mea-

surement error when measuring Arrow-Pratt risk aversion coefficients for

risk averse subjects, whose utility function can be described by an expo-

power function.

Error propagation is, in general, of minor concern for mild to moderate

degrees of decision errors made by every single participant as we have as-
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sumed here. The CRRA utility family, as well as our method, are even able

to smoothen out these mistakes completely, in the sense that measures are

correlated with the “true” measure to the same degree as without introduc-

ing decision errors. The measure obtained using linear interpolation turns

negative once decision errors are simulated, which illustrates the limits of

such an approach for computing intensity measures when decision errors

cannot be ruled out.

5 Validation

We validate our method in laboratory and online experiments using the

risk apportionment methods for elicitation of prudence and temperance as

implemented in Deck and Schlesinger (2010) and Noussair, Trautmann, and

Kuilen (2014), as well as the extension to obtain prudence and temperance

premia proposed by Ebert and Wiesen (2014).

5.1 Laboratory Experiment

The laboratory session included the risky decision sets and a real-effort task

in addition to a survey. By participation in the experiment and in the real-

effort task, subjects earned money. In addition, subjects earned money from

the risk tasks, resulting in an average earning of e27.16 (minimum was e21

and maximum was e34).

Sessions lasted around one hour, and were scheduled at the same time

and weekday (a Wednesday), to avoid differential weekday effects. The dates

were selected to avoid holidays or examination period in Bonn.

5.1.1 Risk tasks. We presented subjects with the risk tasks in blocks that

were preceded by the corresponding instructions and comprehension ques-

tions. Following, e.g., Noussair, Trautmann, and Kuilen (2014), the order of

blocks was chosen in ascending order of complexity to help subjects accus-

tom themselves to the tasks. Subjects were always presented one decision at

a time. All risk tasks consisted of a decision between two options without

the possibility to express indifference. Whether the risk-averse, prudent or

temperate options, respectively, was shown on the left- or on the right-hand

side of the screen was randomized in each task. No lotteries were resolved

before the end of the experiment and all randomization was performed by

the computer. After participants had completed all decisions, one was se-
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lected randomly and paid out according to the decision taken.14 All mone-

tary amounts in the risk tasks were expressed in experimental dollars ($),

that were converted to Euro at an exchange rate of e1 = $10.

Certainty equivalents The first block consisted of the choice tasks for elici-

tation of utility points using the certainty equivalence method as laid out in

Section 3.1 with p = 0.5 and (xmin, xmax) = (0, $140). One of the two options

in this block always offered a sure payment and the other option offered a

lottery with two equally likely outcomes. To illustrate the equiprobable na-

ture of the lottery, we applied an animated coin with a black and a white

side that was rotating, see Figure 3.

Figure 3. Decision Screen Example For The Elicitation of Certainty Equivalents Using the
Rotating Coin Design (in German)

In case the subject preferred the safe option (the risky option), the

amount of the safe option was increased (decreased), and the subject was

again asked for a decision. This procedure is known as the bisection or stair-

case method.15 We repeated it three times to approximate indifference for

each of the 6 utility points we elicited.

Risk apportionment The second block contained five decision tasks to elicit

prudence and the third one contained the five tasks for elicitation of tem-

perance. All tasks in the second and the third block were using the risk

14 The random problem selection mechanism does not alter behavior (Starmer and Sug-
den, 1991) and, moreover, it is the only incentive compatible mechanism when subject
perform several tasks (Azrieli, Chambers, and Healy, 2018).

15 See, e.g., Falk et al. (2018) for a recent example.
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apportionment method described in Section 2 going back to Eeckhoudt and

Schlesinger (2006) and thus contained equiprobable lotteries only.

Roughly half of the subjects was presented the decision situation in the

“dice-design” applied by Noussair, Trautmann, and Kuilen (2014), see Fig-

ure 4(a), with the general population in the Netherlands, the other half was

confronted with the “fortune-wheel-design” applied by Deck and Schlesinger

(2014), see Figure 4(b), with a student sample in the laboratory. Assignment

to the design was randomized at the individual level. Noussair, Trautmann,

(a) Dice-Design by Noussair, Trautmann, and Kuilen
(2014)

(b) Fortune-Wheel-Design by
Deck and Schlesinger (2014)

Figure 4. A Prudent Option in the Risk Apportionment Method (Eeckhoudt and
Schlesinger, 2006)

and Kuilen (2014) use (up to) three different colored dice to highlight the

independence of the different (equiprobable) risks represented by indepen-

dent throws of the dies, which they deem crucial for the interpretation of

the compound risks in terms of prudence and temperance. In a similar vein,

Deck and Schlesinger (2014) use different sized circles divided in half to rep-

resent the equiprobable nature of the lotteries, thereby mimicking fortune-

wheels, where the outcomes are written on the corresponding part of the

fortune-wheel.

Figure 4 shows the prudent option of a lottery pair. Here, the unavoid-

able mean-zero risk represented by the black die or the small fortune wheel

is added to the state of higher wealth (i.e., added to $100), whereas in the

imprudent option, it is added to the state of lower wealth (i.e., $50). An

individual choosing the shown option and expressing the will to throw the

black die or spin the small fortune-wheel when the first lottery—throwing

the red die or spinning the big fortune wheel—resulted in a payment of $100

instead of when it resulted in a payment of only $50 is classified as prudent.

Similarly, an individual expressing the will to combine throwing two dies or
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spinning two fortune-wheels in the same state of the world would be classi-

fied as intemperate, whereas the one preferring to disaggregate them, and

throwing one die or spinning one fortune-wheel in each state of the world,

would be classified as temperate.

The decision situations varied in terms of the level of wealth that the

“harms” were added to and the size of the “harms”. A table containing all

decision situations, exemplary decision situations as well as the (translated)

instructions and control questions can be found in Appendix F.16

Prudence and Temperance Premium With a sub-sample consisting of about

50% of our participants, we additionally elicited prudence and temperance

premia using the method introduced by Ebert and Wiesen (2014) building

on the risk apportionment method (Eeckhoudt and Schlesinger, 2006) used

in the second and third block. An exemplary decision situation to elicit a

prudence premium is shown in Figure 5.17

Figure 5. Elicitation of an “Imprudence-Premium” as introduced by Ebert and Wiesen
(2014): In addition to the imprudent option, an increasing amount of money is o�ered

for compensation of the “misalignment of the harms”.

16 Instructions and control questions were very similar to the original ones applied by the
corresponding authors and adapted only where needed. Decision situations were selected
and scaled in a way to make them have equal means.

17 Note that the prudence and temperance premia as applied by Ebert and Wiesen (2014)
differ from the one in Crainich and Eeckhoudt (2008) that is mentioned in Section 2: Here
and in Ebert and Wiesen (2014), for the imprudent and intemperate option, the premium
is paid in both states of the world, whereas in Crainich and Eeckhoudt (2008) it is paid
just in the best state of the world, i.e. the lower state of the left option.
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Subjects are presented with a lottery pair, where (compound) lotteries

are represented by (combinations of) urns that contain balls. The lottery

pair is accompanied by a list of increasing amounts on the right-hand side,

where one amount at a time is added to the imprudent or intemperate op-

tion of the lottery pair (“Option A” in the example in Figure 5) to ask

for preference in the specific situation. By highlighting the chosen option

for each amount, consistency is enhanced. In total, subjects were asked to

make 100 decisions; 20 for three decision situations each to elicit prudence

and 20 for two decision situations each to elicit temperance. Compensation

amounts ranged from $-11.25 to $10.13 in steps of $1.125 and were the same

for temperance and prudence. A table containing all decision situations as

well as the (translated) instructions and control questions can be found in

Appendix F.

5.1.2 Real-e�ort tasks. We asked participants to complete two types of

real-effort tasks, and rewarded them for completion. In the first real-effort

task, subjects had to pick one out of six suggested solutions to solve a puz-

zle, and in the second, the so-called symbol-correspondence task, they were

asked to select the symbol that corresponded to the digit that was ran-

domly presented. The relevant correspondence table was shown throughout

the task above the presented digit (see Appendix F for examples).

5.1.3 Experimental procedures. We recruited 58 participants via the re-

cruitment platform ORSEE (Greiner, 2015) from the database of volunteers

of the DecisionLab at the Max-Planck-Institute for Research on Collective

Goods in Bonn, Germany.

Subjects conducted all decisions visually isolated from the other partic-

ipants on a computer at which they were seated upon arrival. The experi-

ment was computerized and administered using the experimental platform

oTree (Chen, Schonger, and Wickens, 2016). Instructions with examples

were given on screen and subjects had to answer comprehension questions

before proceeding with their decisions; see Appendix F for details.

Payment All payments were made by electronic SEPA bank transfer which

was initiated immediately after the experiment, thus it was guaranteed by

law that they arrived at the same day.18 Subjects were informed before reg-

istration that agreeing to receiving the payment via electronic bank transfer

18 The allowed timing for clearance in Germany is governed by German civil law (BGB,
§675s) to be one day for transfers within the European Economic Area (EEA)
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was a prerequisite for participation. Thus, we ensured that the probability

subjects attach to receiving the money is the same across sessions.

Subjects entered their International Bank Account Number (IBAN)—

the standard for identifying bank accounts in the European Union and other

countries—themselves, which is used for the bank transfer. Therefore, sub-

jects could be confident that problems with identifying numbers in hand-

writing or the like were ruled out.

Business cards of the first author were distributed to participants, and

they were instructed to contact him if there were difficulties with their pay-

ment. This measure was taken to signal that the experimenters themselves

were in charge of the bank transfers.

5.2 Online Experiment

The online experiment follows closely the laboratory experiment. In par-

ticular, we used the same experimental tasks for elicitation of higher order

risk preferences and the same implementation in oTree. We will therefore fo-

cus here only on the implementation differences. In total 527 subjects, who

were recruited via mTurk, completed the online experiment. Payment was

administered via mTurk. Subjects had a window of three days to complete

the task that we first posted on May 17, 2019. On June 3, 2019, we finished

data collection.

5.3 Validation Results

In this subsection, we pool results from the laboratory and the online ex-

periment. We highlight notable differences between the laboratory and the

online experiment in the text, if applicable, and present results from all

analyzes conducted separately for laboratory and online experiments in Ap-

pendix E.1.

We first classify subjects into risk averse and risk loving, prudent and

imprudent, and temperant and intemperant according to the measures as

resulting from our method. Table 2 reports the distribution of our subjects.

The largest part of the subjects are risk averse and prudent (63.11), followed

by prudent risk seekers, amounting to 18.54 percent. Notably, the sample of

students in the laboratory is considerably more risk averse than the online

sample: Almost 88 percent behave risk averse in the laboratory, while only

75 do so online (see Table 10 in Appendix E.1).
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Table 2. Distribution of Risk and Prudence Attitudes

Risk averse Risk loving All

Non-prudent % 12.75 5.61 18.35
Prudent % 63.11 18.54 81.65
All % 75.86 24.14 100.00

5.3.1 Validation: Relation with (Higher Order) Risk Premia. We validate the

intensity measures derived from our method (see Section 3) by correlating

them with the elicited compensation premia using the risk apportionment

method, as introduced by Ebert and Wiesen (2014). For the risk premium,

we use the indifference value from the first three certainty equivalence de-

cisions, i.e., the certainty equivalent to the lottery (140, 0.5; 0), divide it by

the high outcome, and deduct this from 1.19 As laid out in Section 2, the

theoretical intensity measures of prudence and temperance are proportional

to various premia, although, strictly speaking, not in a linear way. More-

over, the compensation premia that are elicited with the method by Ebert

and Wiesen (2014) are defined slightly differently from those that the the-

oretical intensity measures are shown to approximate. Therefore, it is not

necessarily to be expected to be able to explain a high share of variance.

Table 3 reports the results. All theoretical measures are significantly

correlated with the corresponding premia (p < 0.001). In particular, this

is true for prudence and temperance, which are elicited by completely dif-

ferent decision tasks and elicitation method—the tasks due to Ebert and

Wiesen (2014), building on the risk apportionment method (Eeckhoudt and

Schlesinger, 2006).

Correlations are much higher in our student sample, with correlation

coefficients of up to .81 between the intensity measure of prudence elicited

with our method and the prudence premium, and a still sizeable coefficient

of .7 between the temperance measures, see Table 11 in Appendix E.1. This

might raise the question whether results are driven by cognitive abilities re-

quired to solve the increasingly complex compound lotteries involved in the

risk apportionment method. While cognitive abilities explain a relatively

high share of variation in the prudence and temperance premia, correlation

coefficients between the measures of higher order risk preferences remain sig-

19 A value of 0.5 in this measure corresponds thus to risk neutrality, whereas values
greater than 0.5 indicate risk aversion.
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nificant, showing that the relation in the methods exists above and beyond

the cognitive abilities required to grasp the tasks.

Table 3. Predicting (Higher Order) Risk Premia with Utility-Based Intensity Measures

Risk Premium
Prudence Premium

(EW)
Temperance Premium

(EW)

(1) (2) (1) (2) (1) (2)

AP Risk (−u′′/u′) 0.661*** 0.475***
(0.026) (0.022)

CE Prudence (u′′′/u′) 0.529*** 0.334***
(0.055) (0.041)

DE Temperance (−u(iv)/u′) 0.209*** 0.113**
(0.042) (0.039)

Cognitive Abilities 0.517*** 0.550*** 0.600***
(0.012) (0.021) (0.021)

Num.Obs. 1106 1106 368 368 368 368
R2 0.437 0.670 0.271 0.590 0.045 0.459
R2 Adj. 0.436 0.669 0.269 0.587 0.043 0.456

Notes: This table reports results from OLS regressions, where the dependent variables
are the risk premium (column 1), the prudence premium (column 2) and the temperance
premium (column 3). Explanatory variables are the utility-based intensity measures of
higher order risk preferences, i.e., the Arrow-Pratt coefficient of risk aversion, the Crainich-
Eeckhoudt coefficient of prudence and the Denuit-Eeckhoudt coefficient of temperance,
as resulting from our method. Prudence and temperance premia are elicited using the
method by Ebert and Wiesen (2014). Risk premium is the certainty equivalent of the
lottery (0, 0.5, 140) subtracted from 1. All measures are expressed in standard deviations.
Choices pooled across the online experiment and the student (laboratory) sample. For
separate results, see Table 11 in Appendix E.1.
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

5.3.2 Predictive Quality of the Count Measures Based on Risk Apportionment.
Counting the number of prudent choices in risk apportionment task à la

Eeckhoudt and Schlesinger (2006) is sometimes used to approximate utility-

based intensity measure for prudence and temperance as used in theoretical

work (e.g., Noussair, Trautmann, and Kuilen, 2014). The underlying—yet

empirically unproven—assumption is that higher levels of prudence or tem-

perance make decision errors less likely, and thus result in choosing the

prudent or temperant option, respectively, more consistently, i.e., more of-

ten. We test whether this assumptions is justified, i.e., whether these ‘count

measures’ predict utility-based intensity measures used in theoretical work.

We elicit the intensity measures using the just validated method, and exam-

ine whether a high number of prudent and temperant choices is associated

with higher levels of the Crainich-Eeckhoudt measure of prudence or the

Denuit-Eeckhoudt measure of temperance, respectively.

29



Tables 4 reports the results from OLS regressions of utility-based inten-

sity measures on the number of prudent (temperant) choices. When pool-

ing the “dice” and the “fortune-wheel” design of the risk apportionment

method in the spirit of Noussair, Trautmann, and Kuilen (2014) and Deck

and Schlesinger (2010), one more prudent choice increases the Crainich and

Eeckhoudt (2008) measure of prudence by .15 standard deviations, and the

number of prudent choices explains 31 percent of the variation in the the-

oretical, utility-based prudence measure. In the laboratory experiment, the

“dice-design” as applied by Noussair, Trautmann, and Kuilen (2014) even

explains 39 percent of the variation, while in general, the share of explained

variance is similar across implementation designs and sample, see Table 12

in Appendix E.1.

Turning to temperance, again pooling choices in the “dice design” and

the “fortune-wheel design”, we find that one more temperant choice in the

risk apportionment tasks is associated with an increase of .07 standard de-

viations of the Denuit and Eeckhoudt (2010) measure of temperance. The

variation of the theoretical intensity measure that is explained by these

choices amounts to about 5 percent when pooling the online and the lab-

oratory experiment. Notably, as for prudence, the “dice-design” applied in

the laboratory experiment explains 14 percent of the variation, i.e., almost

double the variation when pooling the implementation designs in the lab,

or thrice the explained variation in the online experiment, Table 12 in Ap-

pendix E.1.

5.4 Summary

We have succesfully validated our elicitation and estimation method for the

utility-based intensity measures of risk aversion, prudence and temperance

using the prudence and temperance premia as elicited in the spirit of Ebert

and Wiesen (2014) building on the well-known risk apportionment method

(Eeckhoudt and Schlesinger, 2006), and a simple measure of risk premium.

Although the premia are theoretically proportional to the utility-based in-

tensity measures, this relationship is not linear, see Section 2. Thus, theory

rules out that the variation of the premia that is explained by the intensity

measures resulting from our method cannot be 1. Nevertheless, for prudence,

this share is sizeable, and the variation explained in the laboratory amounts

to .42, whereas it is .17 for temperance. Even when controlling for cognitive

abilities, we have been able to show significant correlations.

30



Table 4. Predicting Utility-Based Intensity Measures With Counting Measures

Prudence Temperance

Pooled N DS Pooled N DS

Coef. 0.153*** 0.159*** 0.147*** 0.068*** 0.059*** 0.079***
(0.007) (0.011) (0.010) (0.011) (0.014) (0.016)

Num.Obs. 798 404 394 798 404 394
R2 0.306 0.292 0.323 0.049 0.039 0.062
R2 Adj. 0.305 0.291 0.321 0.048 0.037 0.060

Notes: This table reports results from OLS regressions, where the dependent variables
are the utility-based intensity measures of higher order risk preferences, i.e., the Crainich-
Eeckhoudt coefficient of prudence (columns 1-3) and the Denuit-Eeckhoudt coefficient of
temperance (columns 4-6), as resulting from our method (see Section 3). Explanatory
variables are the number of prudent and temperant choices, respectively, in the risk ap-
portionment tasks as implemented by Noussair, Trautmann, and Kuilen (2014) with the
“dice-design” (columns 2 and 4, labelled ‘N’) and by Deck and Schlesinger (2010) with
the “fortune-wheel design” (columns 3 and 6, labelled ‘DS’). Prudence and temperance
intensity measures are expressed in standard deviations. Choices pooled across the online
experiment and the student (laboratory) sample. For separate results, see Table 12 in
Appendix E.1.
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

In addition, we have been able to provide empirical evidence for the yet

unproven assumption that a higher number of prudent or temperant choices

in the risk apportionment tasks implies a higher intensity of prudence or

temperance, respectively. From our laboratory results, it seems that the

“dice-design” due to (Noussair, Trautmann, and Kuilen, 2014) works bet-

ter, whereas in the online experiment, the “fortune-wheel” design explains

a higher share of variaton. As our laboratory sample was recruited in Ger-

many, but the online sample was restricted to participants from the US, we

cannot rule out cultural differences as the underlying explanation of these

observed differences.

6 Application to Savings in Bogotá

We now turn to an application of the method using microdata. We measure

preferences in a population of poor subjects in Bogotá, Colombia, and relate

them to household saving.
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6.1 Data

We collected our data as part of a larger study on savings for the old age.

The survey gathered financial information for a sample of 1200 subjects who

are beneficiaries of the social protection program SISBEN. The program

targets the population in low social strata. We recruited the participants in a

two-step procedure. First, we selected neighborhoods based on shares of the

population belonging to the required strata. Neighborhoods that contained

a large fraction of low income individuals and that were assessed as safe for

the team to visit were included in the study. In the second step, enumerators

visited randomly selected households and verified whether they belonged

to the target group. If this requirement was not fulfilled, the enumerators

visited the neighboring household. We oversampled older females to obtain

a better picture of the potential vulnerabilities women are exposed to in the

old age. Interviews took place in October and November 2013 and lasted on

average 90 minutes.

The survey consisted of 16 sections on general demographics, wealth,

general savings, pension savings, financial literacy, health behavior, expec-

tations on future income and hypothetical questions on psychological traits.

The experiment was conducted with a sub-sample of 693 participants. A

team of enumerators conducted the experiment on tablet computers. To

meet safety demands, the experiments were conducted in a public space

(e.g., community houses) that was easily accessible for participants. The

experiment lasted around 20 minutes.

6.1.1 Net Savings.

Savings In the survey we asked detailed questions on a comprehensive

range of saving devices: housing, savings plans, savings and checking ac-

counts, certificates of deposit, mutual funds, loans given out and savings

in Colombian Pesos or other currencies. We use the sum of these assets to

construct a savings measure denoted Sh. This variable intends to capture

all liquid assets in the household.20

Debt Debt is defined as all financial liabilities a household has against other

households, enterprises and financial institutions, including moneylenders.

We denote total debt as Dh.

20 As it is possible to withdraw money from all of these saving instruments in case of
emergencies, we interpret all of these savings as liquid assets.
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Net Savings Following Noussair, Trautmann, and Kuilen (2014) and Fuchs-

Schündeln and Schündeln (2005) we use net savings as our main variable of

interest, which we calculate as the difference between Sh and Dh.

6.1.2 Income Uncertainty Based on Economic Activity. In order to obtain

measures for the financial riskiness of the sector subjects were working in

we collected measures from the Commercial Register in Bogotá in 2013.21

We calculate for 14 sectors the empirical probability of firm closure within

each sector. We match this then with the sector subjects are usually work-

ing in, which has the same resolution as the official statistics. This measure

of working sector dynamics proxies the degree of income uncertainty and

hence measures the idiosyncratic risk which subjects might want to hedge

using precautionary savings. As unemployment insurance is negligible in

our sample, firm closure in the sector constitutes a major threat to personal

income. This constitutes a substantial and unavoidable background risk.

In this sense our sample and the economic circumstances resemble the

economy described in Aiyagari (1994). There are idiosyncratic earnings un-

certainties, effectively no insurance markets and our subjects are borrowing

constraint. Background risk, defined as uninsurable idiosyncratic shocks, is

arguably substantial and not mitigated by wage insurance on the firm level

as found by Fagereng, Guiso, and Pistaferri (2017b).

Our measure is closely related for example to the measure of income

uncertainty applied by Fagereng, Guiso, and Pistaferri (2017a) when study-

ing precautionary saving in Norway: They infer firm performance volatility

from companies’ balance sheets and use this to instrument their measure of

income uncertainty. This limits their sample to employees of private firms

with balance sheets available to the public and is arguably not suited in

our context. We therefore use the next aggregation level, namely working

sectors, since on this level, we are able to link individuals to secondary data

on economic performance.

The arguments in favor of exogeneity of firm performance volatility given

by Fagereng, Guiso, and Pistaferri (2017a) are valid also for our measure:

First, they argue, firm shocks are hard to avoid for most workers, and sec-

ond, firms pass over this variation onto their workers’ wages. Clearly, in our

case, negative working sector dynamics will be handed over to employees

21 Data was processed and made available in an ‘Overview of Indicators’ by the Knowl-
edge Management Board of the Chamber of Commerce (in Spanish: ‘Tablero de Indi-
cadores’, Dirección de Gestión de Conocimiento), and we use working sectors as provided
in ISIC Rev. IIIa A.C. by DANE, based on the economic activity.
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due to absence of formal contracts as well. Thus, payment can be adjusted

easily, but also employment itself is more uncertain in working sectors with

a higher share of closed businesses.

Time Preferences We followed the experimental design by Andersen et al.

(2008) to elicit time preferences: Participants decided on receiving an

amount x in 30 days or an amount x(1 + r/12) with r > 0 in 60 days. Values

of r were increased gradually and subjects usually switched from choosing

x in 30 days to x(1 + r/12) in 60 days for some r according to their time

preferences. Using this switching point, we calculate a lower and an upper

bound for the interest rate. This interest rate can also be interpreted as

impatience, as people were deciding about the timing of receiving money.

We repeated the task with a higher delay of payment: Subjects now

decided about receiving the lower amount in 180 days or receiving the higher

amount in 210 days. Similarly to the case for the near future time frame,

we deduce a lower and an upper bound of interest rate or impatience from

the switching point.

The difference between both interest rates or impatience for the two time

frames informs about consistency in interest rates. For individuals deciding

consistently, the impatience to receive a monetary amount 30 days earlier

should be unaffected by shifting the date of the earlier payment by 150 days.

A lower impatience in the more distant future corresponds to an increasingly

patient subject.

Other Data In the style of comparable, previous studies on precautionary

saving (e.g., Fuchs-Schündeln and Schündeln, 2005; Noussair, Trautmann,

and Kuilen, 2014), we control for other socioeconomic factors within our

analysis such as age, gender, number of adult household members, number

of children in a household, education and income (we use average per capita

household income). To these, we add further characteristics that have been

found to be important in explaining savings:22

We measured financial literacy within the survey (Lusardi and Mitchell,

2011) and include its result in the analysis.23 Van Rooij, Lusardi, and Alessie

22 Some studies focused on the likelihood of saving, others on the amount of saving.
Since we use the same control variables for estimating the likelihood and the amount of
saving, we include a variable (if possible) that has been found to either affect the likelihood
of saving or the amount or both.

23 In total, we were asking 18 questions on financial literacy concerning interest rate,
asset classes, basic math and financial math. The variable included in the regression cor-
responds to the number of correctly answered questions.
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(2012) find a positive correlation between financial literacy and accumulated

savings. Devaney, Anong, and Whirl (2007) and Fisher and Montalto (2010,

2011) report short term planning and saving horizons (i.e. time preference

for the present) having a negative effect on the likelihood of saving and

net wealth. In our analysis, we use an experimental measure of impatience,

time inconsistency with respect to impatience and the planning horizon with

respect to financial decisions. Furthermore, we calculated the BMI from

weight and height of subjects. The BMI serves as a proxy for temptation

and self-control (Hofmann, Friese, and Roefs, 2009; Moffitt et al., 2011). It

also serves as a proxy for health status that is positively associated with the

likelihood of saving (Fisher and Montalto, 2010, 2011).

6.2 Results

We first give a characterization of our sample in terms of socioeconomic

characteristics, risk and time measures. Then we use these measures in or-

der to explain net savings, and finally we model individual precautionary

savings motives, i.e., income uncertainty, and relate them to net savings.

6.2.1 Descriptive Statistics. We obtain the full set of household charac-

teristics from 680 subjects of which 72% were female. The mean age was

49 years and spanned from 24 to 87 years. The median education level is

primary school. In the financial literacy test, subjects answered on average

9.29 questions out of 18 correctly. The average BMI is slightly above 25, the

threshold to mild overweight. The average income per household member is

319 thousand Colombian Pesos (COP) and the average debt is 1.64 million

Pesos, which leaves an average of -1.36 million Pesos in net savings.

55 percent of our sample has neither savings nor any debt and aver-

age net-savings amount to −1, 361, 000 COP (710 USD). Around 85 per-

cent of our population has no savings and average savings in the sample

are 276,000 COP (140 USD), which is less than a month’s average per

capita household income. Around 27 percent of those reporting non-zero

savings save exclusively in cash, another 20 percent save exclusively using

other savings technologies. About 34 percent are saving exclusively for hous-

ing, of which roughly the half uses a special fund, whereas the other half

uses any form of saving device. Average debt amounts to 1,637,000 COP

(850 USD) and 38 percent of our sample hold positive debt. Table 5 pro-

vides an overview of the demographic characteristics.
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Table 5. Summary Statistics

Mean Med. s.d. Min Max Obs.

Male 0.28 0.00 0.45 0.00 1.00 680
Age 48.87 49.00 13.43 24.00 87.00 680
Education 2.48 2.00 0.70 1.00 4.00 680
Financial literacy 9.29 10.00 3.39 0.00 16.00 680
BMI 25.75 25.51 4.31 12.89 42.97 680
Adult HH members 2.85 3.00 1.41 1.00 12.00 680
Children HH members 1.21 1.00 1.29 0.00 7.00 680
Income 3.19 2.77 2.25 0.01 18.00 680
Savings (100k) 2.76 0.00 15.18 0.00 200.00 680
Debt (100k) 16.37 0.00 61.85 0.00 588.04 680
Net savings (100k) -13.61 0.00 63.94 -588.04 187.00 680
Zero net-savings 0.55 1.00 0.50 0.00 1.00 680

6.2.2 Risk Aversion, Prudence and Time Preferences. Table 6 shows the

Arrow-Pratt coefficient of risk aversion, measures of prudence and time

preferences. The mean annual interest rate r subjects asked to receive an

amount x(1 + r/12) in 60 days instead of an amount x in 30 days is 29.6

percent. This figure is in the range of estimates from experiments with the

general population in Denmark (Harrison, Lau, and Williams, 2002). On

average, this interest rate or mean impatience stays approximately constant

when the timing is changed to receiving the monetary amounts in 180 or

210 days, respectively.

Table 6. Summary Statistics of Risk and Time Measures

Mean Med. s.d. Min Max Obs.

Risk Aversion (A&P) 0.03 -0.01 1.17 -2.43 2.86 588
Prudence (C&E) 7.24 7.61 6.28 -0.50 25.70 588
Impatience 29.60 22.00 15.41 16.00 52.00 693
Increase in patience 0.13 0.95 16.35 -38.90 36.95 693

We obtained a full set of risk preference measures for 588 subjects. Ta-

ble 7 gives an overview over the classification of risk and prudence as mea-

sured based on optimally smoothed P-spline regression. We observe that all

combinations of risk aversion and prudence attitudes are present, confirm-

ing previous findings by Noussair, Trautmann, and Kuilen (2014) that even

risk lovers can be prudent.24 48 percent of the subjects exhibit risk aversion

24 Crainich, Eeckhoudt, and Trannoy (2013) theoretically show that prudent risk lovers
devote all their income to saving.
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and roughly 60 percent are prudent. The most unlikely combination, with

below 3 percent, is being risk loving and imprudent. So utility functions

that require risk-loving subjects to be imprudent are not sufficiently flexible

to describe our data.

Table 7. Classification of Risk Aversion and Prudence

Risk averse Risk loving Mixed Total
pct pct pct pct

Imprudent 4.76 2.55 0.68 7.99
Prudent 29.25 26.87 1.87 57.99
Mixed 14.46 19.05 0.51 34.01
Total 48.47 48.47 3.06 100.00

Notes: This table reports the share of risk-averse and prudent individuals using the mea-
sures described in Section 3. The measures were computed using optimally smoothed spline
functions, evaluated at and averaged over 1000 points in the support. Risk neutrality and
prudence neutrality is a probability zero event, so none of our subjects was classified, so
we omit this category.

6.2.3 Precautionary Savings and Prudence. We now turn to the relationship

between our experimental measure of prudence and wealth. As laid out in

the theoretical model in Appendix A, we expect to observe a positive re-

lationship between our measure of the strength of prudence and people’s

accumulated wealth—given present or past income uncertainty. We run lin-

ear regressions on net savings on the Crainich and Eeckhoudt-measure of

prudence attitudes.25 We use several sets of control variables motivated by

previous studies (e.g., Noussair, Trautmann, and Kuilen, 2014). The results

can be found in Table 8.

In all specifications including both the risk averse and the risk loving we

find a significant positive relationship between prudence and wealth. When

analyzing both subgroups independently, we find a significant positive re-

lationship only for the risk-averse sub-sample. When excluding those that

neither save nor are indebted, however, the relationship is significantly pos-

itive also for the risk-loving (see Table 15 in Appendix E).

6.2.4 Income Risk. We now turn to the analysis of the impact of indi-

vidual income risk, prudence and net savings. Several previous empirical

studies have identified prudence parameters from consumption volatility

25 Robustness checks applying the measure by Kimball (1990) can be found in Ap-
pendix E.
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Table 8. Net Savings and Prudence (C&E)

Full Sample Risk Averse Risk Loving

(1) (2) (3) (4) (5) (6) (7)

Prudence (C&E) 1.140??? 1.161??? 1.114?? 1.707??? 1.468??? 0.560 0.651
(0.422) (0.422) (0.431) (0.641) (0.559) (0.601) (0.724)

Risk Aversion (A&P) 3.329? 3.291 0.637 6.038
(2.002) (2.134) (3.120) (5.325)

Controls No No Yes No Yes No Yes

Observations 567 567 554 270 267 279 271

Notes: This table reports the results of ordinary least squares regressions on net savings.
Prudence (C&E) is the Crainich-Eckhoud measure of prudence. Risk Aversion (A&P)
is the Arrow-Pratt measure of risk aversion. The controls are time preferences, gender,
age, financial literacy, body mass index (BMI), household members (adults and children),
income as measured as the average income per household member, planning horizon and
education. Coefficients of controls are reported in the full regression results in Appendix E.
We account for potential heteroskedasticity by robust standard errors. Results of t-tests
indicated at following significance levels ? p < 0.10; ?? p < 0.05; ??? p < 0.01.

(Dynan, 1993; Fagereng, Guiso, and Pistaferri, 2017a; Guiso, Jappelli, and

Terlizzese, 1992). Fagereng, Guiso, and Pistaferri (2017a) instrument con-

sumption volatility with firm specific shocks that pass through to wages.

We construct a similar measure of income risk by looking at firm closures

by sector, see Section 6.1. Figure 6 shows the distribution of our measure of

income risk aggregated at the Localidad level.

We regress net income on the prudence measure interacted with the

probability of firm closure. The empirical model can be written as follows:

W =α + β1 Prudence + β2 Shock +

β3 Prudence × Shock + β4X + ε
. (2)

This allows us to answer the question, whether prudent subjects who

are confronted with a higher background risk accumulated higher levels of

wealth as predicted by our theoretical framework. Results are presented in

Table 9.

Column (1) in Table 9 shows the raw correlations. The main effect of

prudence is positive and highly significant and so is the interaction term

of income risk with prudence. Hence, more prudent people save more when

facing higher income risk. This effect is robust to the inclusion of controls

in column (2). When restricting the sample to only risk averse agents, the

coefficients on the interaction term stay positive, however they are not sig-

nificant at conventional levels for the interaction term, unless controls are
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Figure 6. Income Uncertainty in Bogotá: Ratio of Closed to Existing Businesses in 2013.

Notes: Individuals are categorized based on the economic activity they perform according
to the ISIC Rev. IIIa A.C. categorization as used e.g., by DANE for their household survey.
At this aggregation level, official data on firm closure is available e.g., from the Knowledge
Management Board of the Chamber of Commerce of Bogotá. Participants are assigned a
level of income uncertainty corresponding to the ratio of firm closure in the working sector
they are classified.
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Table 9. Net Savings, Firm Closures and Prudence (C&E)

Full Sample Risk Averse Risk Loving

(1) (2) (3) (4) (5) (6)

Income risk -1.746 -1.479 -1.863 -1.399 0.768 2.146
(2.354) (2.405) (2.870) (3.031) (3.293) (3.412)

Prudence (C&E) 1.240??? 1.115?? 2.224??? 2.036??? 0.298 0.199
(0.461) (0.471) (0.769) (0.739) (0.613) (0.660)

Prudence (C&E)
× Income risk 1.015?? 1.066?? 0.856 1.037? 0.984? 0.925

(0.424) (0.416) (0.600) (0.566) (0.588) (0.566)

Risk Aversion (A&P) 4.644? 2.231 9.500?

(2.408) (4.460) (5.666)

Controls No Yes No Yes No Yes

Observations 471 459 218 215 237 230

Notes: This table reports the results of ordinary least squares regressions on net savings.
Prudence (C&E) is the Crainich-Eckhoud measure of prudence. Risk Aversion (A&P) is
the Arrow-Pratt measure of risk aversion. Income risk is measured as the ratio of closed
to existing businesses in 2013 in the working sector an individual was usually working in
at the time of the survey. Prudence and income risk are centered. The controls are time
preferences, gender, age, financial literacy, body mass index (BMI), household members
(adults and children), income as measured as the average income per household member,
planning horizon and education. Coefficients of controls are reported in the full regression
results in Appendix E. We account for potential heteroskedasticity by robust standard
errors. Results of t-tests indicated at following significance levels ? p < 0.10; ?? p < 0.05;
??? p < 0.01.
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included. For the risk-loving agents, however, we observe a positive and

significant coefficient on the raw correlation of the interaction term. After

including control variables, this coefficient is only significant if focusing on

those that are saving or are indebted (see Table 18 in Appendix E). When

using the Kimball measure of prudence we get large, but insignificant coef-

ficients (see Table 16 in Appendix E).

6.3 Summary

Applying our method to a sample of poor households in Bogotá, Colom-

bia we find comparable results with respect to prudence as for exam-

ple Tarazona-Gomez (2004) in her experiment with students in Bogotá.

The results regarding risk aversion are also in line with previous findings

(Tarazona-Gomez, 2004), although we find a higher share of risk-loving in-

dividuals.

Most interestingly, however, we find strong support for the theory of

precautionary saving: According to the theoretical framework going back to

Leland (1968), prudent individuals react to income uncertainty by raising

their saving. This should lead to higher savings, and those who are more

likely to face income uncertainty should hold higher savings. In our exten-

sion of the theoretical model in Appendix A, we have shown that those who

are more prudent than others with respect to different intensity measures

should hold higher savings, irrespective of them being risk averse or risk

loving.

This relationship can be found in the data, and it is robust—even when

we pool risk-averse and risk-seeking individuals: We find prudence to be

strongly linked to a higher level of net savings. While preferences like risk

aversion and time preferences have failed to explain a low level of wealth

empirically, prudence seems to be of importance. Our results suggests that

the sample under study has a high demand for consumption smoothing and

would thus profit from a suitable solution—although caution is warranted

for the correlational nature of our data.

7 Conclusion

In this paper, we have developed the very first method for non-parametric

elicitation of utility-based intensity measures of higher order risk preferences.

We thus provide a tool to measure those utility-based measures applied in
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theoretical work without relying on the commonly used parametric func-

tions that are not flexible enough for working with higher order risk prefer-

ences, for example because they cannot model risk preferences of imprudent

risk averters, or intemperant risk averters, or, in case of the expo-power

family not even those of imprudent agents.

Using a simulation exercise, we illustrate the favorable characteristics of

our method. We show that—for the case of the Arrow-Pratt measure of risk

aversion—the method performs comparable to the power utility family or

the expo-power family with respect to smoothing out measurement errors.

Simulating decision errors, we can also reject worries about error propaga-

tion affecting the final intensity measures as unjustified, as it leaves the

correlation coefficient with the true (assumed) intensity measure unaffected

to the third digit.

We validate our method using the only alternative to elicit proper inten-

sity measures of higher order risk preferences—the method by Ebert and

Wiesen (2014)—, which, however, does not elicit utility-based intensities as

used in theoretical work, but premia. To this end, we conduct experiments

both online and in the laboratory, with several hundred participants. We

find the intensity measures are significantly correlated, although theoreti-

cally, the relationship is not even linear. Generally, validation results in the

laboratory are stronger than those from the online sample, but also those

show highly significant relations. In addition, we provide empirical evidence

in favor of the common assumption (e.g., Noussair, Trautmann, and Kuilen,

2014) that choosing the prudent or temperant option more often or more

consistently in the risk apportionment tasks (Eeckhoudt and Schlesinger,

2006) is related to stronger prudence and temperance intensities.

In our last chapter, we use these validiated measures for the first direct

test of the precautionary saving theory due to Leland (1968) and Kimball

(1990), using microdata and measures of the (original) theoretical model

(and our extension). We examine the relation of precautionary savings, in-

come risk, and utility-based prudence intensity measures resulting from our

method among a sample of more than 650 poor urban households in Bogotá,

Colombia, and find—although correlational—strong support for the predic-

tions of the model. More prudent individuals save more compared to less

prudent individuals, and in particular so, when facing income risk.
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A A Two-Period Savings and Consumption Model

The seminal work by Leland (1968) linked a positive third derivative of the

Bernoulli utility function in expected utility theory to precautionary saving.

A key finding is that (precautionary) savings can be independent of risk

aversion.26 In further developments, Kimball (1990) introduced a measure

for the intensity of prudence that indicates the strength of the precautionary

saving motive in a two-period model of consumption and saving assuming

time-separable utility, However, Kimball focuses on risk averters (character-

ized by a concave utility function), neglecting the existence of risk lovers

(convex utility function), whereas the model of Leland refrains from impos-

ing such restrictions.

Focusing on risk averters only, as recently been shown to be too restric-

tive. Building on work by Eeckhoudt, Schlesinger, and Tsetlin (2009) on

“mixed risk averters” who like to combine good with bad outcomes, Crainich,

Eeckhoudt, and Trannoy (2013) elegantly demonstrated the equivalence be-

tween a preference for combining good with good outcomes and a positive

second, third and fourth derivative, corresponding to risk loving, prudent

and intemperant behavior; this pattern they attribute to “mixed risk lovers”

who agree with mixed risk averters on the sign of uneven derivatives, but

disagree on even derivatives. Using a simple two period-model assuming

time-separable utility, they show that prudent risk lovers devote all their

income to saving in the presence of a future income risk. Empirical sup-

port for the existence of mixed risk averters and mixed risk lovers is given

by Noussair, Trautmann, and Kuilen (2014), who study the prevalence of

risk aversion, prudence and temperance in a student sample and the gen-

eral population in the Netherlands. They find about 15 percent of their

sample showing risk-loving behavior, and that “prudence is more prevalent

than temperance”. What is more, they find that “[t]he degree of temper-

ance seems to be more closely related to the degree of risk aversion than

prudence is”. In their student sample, they find that the rank correlation

between prudence and risk aversion is not significant (and negative), while

the rank correlation between risk aversion and temperance is significant and

positive.27 Although they pool risk-averse and risk-loving subjects in their

26 Noussair, Trautmann, and Kuilen (2014) confirm this conjecture empirically for a sam-
ple of Dutch individuals: While prudence is correlated with saving and wealth measures,
risk aversion is not.

27 When pooling student sample and the general population, both rank correlations are
positive and significant, however, the correlation between risk aversion and prudence is still
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analysis, they find a strong connection between prudence and saving and

wealth, which is robust to controlling for risk aversion levels and temper-

ance, suggesting that this connection also holds for the 15 percent showing

risk-loving behavior. However, results are not presented for the risk-loving

and the risk-averse sub-samples separately.

When considering risk lovers while investigating the relationship be-

tween prudence and saving, the intensity measure of prudence put forward

by Kimball (1990), −u′′′/u′′ is inapplicable. The measure u′′′/u′, advocated

for by Crainich and Eeckhoudt (2008), building on earlier work by Modica

and Scarsini (2017) and Keenan and Snow (2002) is an interesting candi-

date, as it is defined independently of the second derivative of the utility

function. We show that this measure is a good measure for the intensity of

the precautionary demand for saving, building on the original and more gen-

eral framework of saving and consumption by Leland (1968). In particular,

one prediction emerging from our model is that also risk lovers may save

a non-trivial fraction of their income proportional to the intensity measure

of prudence u′′′/u′, which extends the finding by Crainich and Eeckhoudt

(2008) in the direction of allowing risk lovers to save a non-trivial fraction

of their income—proportional to the measure of prudence u′′′/u′.

We first present a consumption and saving model based on the work by

Leland (1968). As in the original work, we do not assume overall utility to

be additively time-separable. Besides resulting in less realistic predictions

regarding the savings fraction of risk lovers, the rather strong assumption

of first and second period consumption utility being perfect substitutes im-

plied by additive time-separability of overall utility has been empirically

debated in the literature on time-discounting at least since G. Loewenstein

(1987).28 Double-check: Moreover, a time-separable utility function is incon-

sistent with empirical findings in the area of consumption and saving. For

example, excess smoothness in aggregate consumption growth compared to

aggregate income growth, a well-documented phenomenon, cannot be ex-

plained by a time-separable utility function (Pagel; MichaelidisLudwig).

Thus, there is growing empirical evidence that this assumption might be

too restrictive to explain individual and aggregate consumption and saving

decisions.

lower than that between risk aversion and temperance. Moreover, temperance significantly
increases with risk aversion, which is not the case for prudence.

28 In fact, with time-separable utility, risk lovers either save all or none of their income
(see e.g., Crainich, Eeckhoudt, and Trannoy, 2013).
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Different models of inter-temporal decision-making, starting with

Gilboa (1989), have been axiomatizing a utility path dependence (see

also Wakai, 2008, Axiom 3 for a more recent example). In the spirit of

Gilboa (1989), we assume that individuals dislike variation in consumption

and experience disutility when consumption varies over time. This simple

extension allows to explain a precautionary motive for saving also for

risk-loving individuals—proportional to the measure of prudence u′′′/u′.

A.1 A two-period model of consumption and saving

We assume that an agent lives for two periods and receives income wt for

t ∈ 1, 2. The income in the first period is deterministic, whereas in the sec-

ond period, w2, is random with known expectation and variance given by

E[w2] = w̄2 and E[(w2 − w̄2)
2] = σ2, respectively.

The agent has access to financial markets, where the fraction of income

saved in t = 1, k ≤ 1, receives an interest rate r > 0.29 Consumption in t = 1

is c1 = (1− k)w1 and consumption in t = 2 is c2 = w2 + (1 + r)kw1.

The agent’s objective is to maximize the expected inter-temporal utility

of consumption E[U(c1, c2)] by deciding on the fraction of income, k, that

they would save in t = 1. The inter-temporal utility of consumption is given

by:

U(c1, c2) = u1(c1) + u2(c2) + g(c2 − c1), (3)

where ut(ct) is the three times differentiable utility function of con-

sumption for t ∈ 1, 2 and g denotes a three times differentiable reference-

dependent value function that takes consumption in the first period as refer-

ence. If consumption in the second period is larger than consumption in the

first period the function takes a positive value, reflecting a positive surprise.

If the opposite is true, individuals suffer a utility loss that is proportional to

the drop in consumption. For simplicity, we assume that the discount rate

is equal to 1.

We assume that the reference dependent value function is concave. By

incorporating a reference-dependent value function, we modify the assump-

tion of additive time-separable utility previously adopted by Kimball (1990).

29 In case of negative savings, k is restricted such that c2 will always be non-negative.
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Such an additive term relating consumption of the two periods has been ap-

plied before in the context of intertemporal consumption and saving models

by Bowman, Minehart, and Rabin (1999) or Kőszegi and Rabin (2009).

We assume positive marginal utility of consumption (u′t > 0) but do not

make any assumption about the second derivative of the utility function and

allow u′′t to be either (weakly) positive, indicating risk aversion (neutrality)

or negative, indicating risk-loving behavior.

The first- and second-order condition for an interior solution imply

that—in absence of uncertainty—the following conditions are satisfied for

the optimal consumption bundle (c∗1, c
∗
2) resulting from the optimal saving

rate k∗:

dU

dk
= (1 + r)

∂U

∂c2
− ∂U

∂c1
= 0 (FOC)

d2U

dk2
=

d

dk

[
(1 + r)

∂U

∂c2
− ∂U

∂c1

]
< 0. (SOC)

For an additive U with a reference-dependent value function as in (3),

(SOC) writes

u′′1(c1) + u′′2(c2)(1 + r)2 + g′′(c2 − c1)(2 + r)2 < 0.

Clearly, in case u1 and u2 are strictly concave in ct (corresponding to a risk-

averse individual) and when g′′ ≤ 0, the second order condition is satisfied.

Moreover, if g′′ is negative and the absolute value of the last term is larger

than the first two in (SOC), then overall utility is concave in k. Hence, the

second order condition (SOC) is satisfied, even if u1 and u2 are convex as

in the case of a risk-loving individual.

To study how income uncertainty affects the optimal level of the saving

decision, we follow Leland. Taylor series expansions of E
[
∂U
/
∂ct
]

in the

resulting first-order condition around the optimal consumption bundle in

absence of uncertainty indicate that the effect of uncertainty on the optimal

saving rate depends on the sign of(
∂3U∗

∂c1∂(c2)2
− (1 + r)

∂3U∗

∂(c2)3

)
σ2, (4)
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where U∗ is defined as U evaluated at the consumption bundle resulting

from the optimal saving rate in absence of income uncertainty.30 Leland

(1968) infers that if (4) is negative, we may “[u]nder reasonable regularity

assumptions [. . . ] say that the optimal [saving rate] will be larger [. . . ] when

uncertainty is present, and the more uncertainty, the greater will be the

optimal [saving rate].” This implies that the saving rate will be larger when

income is uncertain if the following expression is negative:

−
(
(2 + r) g∗′′′(c2 − c1) + (1 + r)u∗2

′′′(c2)
)
σ2. (5)

This corresponds to (4) for utility as given in (3). Thus, uncertainty results

in a positive precautionary demand for saving for prudent individuals (those

for which u′′′2 > 0) when g′′′ ≥ 0, provided that the necessary condition of a

negative second derivative of overall utility with respect to the saving rate

(SOC) is satisfied. We summarize this in the following proposition:

Proposition 1 Let the overall inter-temporal utility of an agent be given by

U(c1, c2) = u1(c1) + u2(c2) + g(c2 − c1). Assume g such that d2U/dk2 < 0.

Then a non-negative third derivative of the reference-dependent value func-

tion g and a positive third derivative of the second period utility, i.e. g′′′ ≥ 0

and u′′′2 > 0, are a sufficient (though not necessary) condition for a positive

precautionary demand for saving under the assumption of the model of pre-

cautionary saving by Leland (1968). This statement holds independently of

the sign of the second derivative of the second period utility.

A.2 Exemplary reference-dependent value function

So far the ‘reference-dependent value function’ has been characterized as

a concave function of the difference of consumption in the first and in the

second period and hence as a concave function of the proportion k of income

saved. We now provide an example of a particular reference-dependent value

function. We assume that

g(x) := −lx2 (6)

with l ≥ 0; for l large enough, d2U/dk2 < 0 and the extreme of the utility

function at the critical point satisfying the first-order condition is a utility

maximum (for a risk-averse individual, l = 0 is large enough).

30 More generally, for a function f(k), we define f∗ as f evaluated at the optimal saving
rate k∗ in absence of uncertainty.
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Introducing a function g(c2 − c1) = −l(c2 − c1)2 for l > 0 decreases over-

all utility with an increasing difference between consumption in the first

period and consumption in the second period. This special choice of the

reference-dependent value function incorporates variation aversion (for l >

0) as observed empirically by G. F. Loewenstein and Prelec (1993), which

challenged time-separable utility. Gilboa (1989) axiomatically derived a util-

ity function with path-dependence, where overall utility is decreased as

the difference between consumption in the first and consumption in the

second period grows, holding any of the two constant. More specifically,

Gilboa (1989) proposed a reference-dependent value function of the form

|u(c2)− u(c1)|. In a more recent work, Wakai (2008), translates the idea of

variation aversion in a setting where negative variation is more unpleasant

than positive variation is pleasant.

The way we incorporate variation aversion is an analytically convenient

version of the utility function proposed by Gilboa (1989), which also de-

creases overall utility as the difference between consumption in the first and

consumption in the second period grows, but our function does so indepen-

dently of the absolute levels of consumption. This simplification might seem

strict, as for high consumption levels, a relatively small difference might

loom less than the same absolute difference for low consumption levels or

vice versa. As the scaling parameter l might capture these individual wealth

levels, however, we argue it is appropriate.

With respect to life-time saving, our choice of the reference-dependent

value function is a way to incorporate the aim of consumption smoothing as

predicted by the permanent income hypothesis (Friedman, 1957) or simply

the commitment of living and consuming in the next period.

This choice of utility could, additionally to any risk-averse individual,

also represent an individual that is willing to take risk in each period, but

only as long as the difference between consumption in both periods does not

get too large—impeding ‘ruthless’ over-consumption in any of both periods.

If g(c2 − c1) = −l(c2 − c1)2 as in the example above, then g′′′ ≡ 0 and we

rewrite (5):

−(1 + r)u∗2
′′′(c2)σ

2. (7)
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From this we see that just as in the case of simple additive, time-separable

utility, a positive precautionary saving demand results solely from a positive

third derivative of second period utility with respect to k.

We summarize these findings in a corollary:

Corollary 1 Let the overall intertemporal utility of an agent be given by

U(c1, c2) = u1(c1) + u2(c2)− l(c2 − c1)2. Assume l large enough such that

d2U/dk2 < 0. Then a positive third derivative of the second period utility,

i.e. u′′′2 > 0, is both a sufficient and a necessary condition for a positive

precautionary demand for saving under the assumption of the model of pre-

cautionary saving by Leland (1968). This statement holds independently of

the sign of the second derivative of the second period utility.

Corollary 1 states that—given the reference-dependent value function,

and thus the overall utility, is of the most simple form allowing for a regular

utility maximum—a positive third derivative of the second period utility

alone causes a positive precautionary demand for saving, for risk-loving and

risk-averse individuals, where for the latter, l = 0 is large enough.

Unfortunately, the existence of a reference-dependent value function and

its particular shape is not directly testable. This drawback is also inherent

in the models by Kőszegi and Rabin (2009) and Bowman, Minehart, and

Rabin (1999).

A.3 Measuring the Strength of the Precautionary Saving Motive

We now show, building on the model by Leland (1968), that the measure by

Crainich and Eeckhoudt (2008) can also be directly interpreted as a mea-

sure of intensity of a precautionary savings demand whereas the measure

by Kimball (1990) is restricted to the case of risk-averse individuals. This

second measure is adequate when comparing risk-averse individuals only,

but cannot generally be used in the framework of Leland’s model or the

extension of the model that we present here.

Crainich and Eeckhoudt measure Building on previous work on downside risk

aversion,31 Crainich and Eeckhoudt (2008) suggest measuring the degree

of prudence by π = u′′′/u′ (Keenan and Snow, 2002; Modica and Scarsini,

2017). The intuitive interpretation they give of this measure is the analog to

31 Downside risk aversion is equivalent to prudence for three times differentiable utility
functions.
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the utility premium for compensating the pain of a zero-mean risk. When

there is ‘misapportionment of risk’ (meaning risk added to a state of lower

wealth instead of to the state of higher wealth), π = u′′′/u′ is proportional

to the money equivalent of pain induced by this misapportionment. One

advantage of this measure is, that it is independent of the sign of the second

derivative. Hence, it is closely related to the theoretical prediction of the

model by Leland (1968) as it can be computed for both risk-averse and

risk-loving individuals leading to a similar interpretation.

To see how the measure by Crainich and Eeckhoudt (2008) can be incor-

porated in the Leland (1968) framework, rewrite (4) as(
∂3U∗

∂c1∂(c2)2
− ∂U∗

∂c1

/∂U∗
∂c2

∂3U∗

∂(c2)3

)
σ2 (8)

=

(
∂3U∗

∂c1∂(c2)2
− ∂U∗

∂c1

∂3U∗

∂(c2)3

/∂U∗
∂c2

)
σ2, (9)

where we used the first-order condition (FOC) and rearranged terms.

If the utility is additively time-separable (i.e. g ≡ l ≡ 0), (8) can be writ-

ten as

−u∗1
′π∗σ2. (10)

Hence, it is clear that the savings rate increases with the intensity of pru-

dence π∗ = ∂3U∗

∂(c2)3
/∂U

∗

∂c2
=

u∗2
′′′

u∗2
′ .

Let us now turn to the case of a utility with an additive reference-

dependent value function of the form −l(c2 − c1)2 relating consumption in

the two periods. (8) in this case equals (5) with g′′′ ≡ 0. We focus on the

second term,

−(1 + r)u∗2
′′′(c2) (11)

and find that the larger u∗2
′′′, the larger the precautionary savings demand

under the conditions derived before. Also in this case, π is a good measure

of the precautionary savings demand. First, because dividing u∗2
′′′ by u∗2

′

leaves the sign unchanged. Second, following the rationale by Pratt (1964)

when justifying his measure, multiplying u with a positive constant does not

change behavior, but it changes u′′′. The measure π is unaffected by such a

transformation.

We summarize these findings:
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Proposition 2 Let the overall intertemporal utility of an agent be given by

U(c1, c2) = u1(c1) + u2(c2)− l(c2 − c1)2. Assume l large enough such that

d2U/dk2 < 0. Then, all else equal, m∗ = ∂3U∗

∂(c2)3
/∂U

∗

∂c2
indicates the strength

of a precautionary demand for saving under the assumption of the model

of precautionary saving by Leland (1968), including regularity assumptions.

This statement holds independently of the sign of the second derivative of

the second period utility.

Note that for risk-averse individuals, Proposition 2 holds for l = 0, i.e. under

the usual assumption of time-separable utility.

Kimball (1990) measure The first measure of the degree of intensity of pru-

dence was proposed by Kimball (1990). Using a close analogy to the Arrow-

Pratt measure of risk aversion, the intensity of prudence is defined as

−u′′′/u′′. In a simple two-period model with additive time-separable utility,

Kimball (1990) shows that the savings function of a globally more prudent

individual at a given level of saving moves upward at a lower level of risk.

This measure thus is directly related to the intensity of the precautionary

saving motive.

The measure by Kimball (1990) has two shortcomings that are especially

relevant when trying to apply the concept empirically, see Appendix B for

an example. First, since the measure depends on the second derivative of the

(per-period) utility function, it implies that precautionary savings depend

on risk aversion. However, Leland (1968) shows that the precautionary de-

mand for savings is independent of the degree of risk aversion.

Second, when focusing on precautionary savings, Kimball (1990) ne-

glects the possibility of a convex utility function. Hence, the proposed mea-

sure is only meaningful for risk-averse individuals, as for them, it shows a

positive value when prudent, but not for risk-loving individuals, for whom

its value is negative if prudent. Similarly, this measure yields a positive in-

tensity of prudence for an imprudent individual (negative third derivative)

that is risk loving, leading to a contradiction.
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B Dynan (1993)

Dynan (1993) assumes a concave utility, which is additive over time and

establishes the following link between expected consumption growth, pru-

dence and the variation in consumption growth:

Et
[
ci,t+1 − ci,t

ci,t

]
=

1

ρr

(
ri − δ

1 + ri

)
+
ξ

2
Et

[(
ci,t+1 − ci,t

ci,t

)2
]
, (12)

where Et is the expectation conditional on information available at time t,

ci,t represents consumption, δ is the constant time preference rate, and ri is

the household’s interest rate. ρr = −ci,t(u′′/u′) is the coefficient of relative

risk aversion and ξ = −ci,t(u′′′/u′′) is the coefficient of relative prudence as

defined by Kimball (1990). This equation has been derived using a Taylor

series approximation for u′(ci+1,t) around ci,t:

u′(ci,t+1) ≈ u′(ci,t) + u′′(ci,t)(ci,t+1 − ci,t) +
u′′′(ci,t)

2
(ci,t+1 − ci,t)

2.

(13)

Note that this approximation does not impose any structural constraints on

any of the derivatives. This result is combined with the first order condition

Dynan (1993, Equation 3) resulting from solving the maximization problem

as stated in Dynan (Equation 1 1993):(
1 + ri
1 + δ

)
Et
[
u′(ci,t+1)

]
= u′(ci,t). (14)

What is problematic about that approach is that ξ as used in equation

(12) does only correspond to Kimball’s definition, when u′′′(ci,t)u
′′(ci,t) < 0.

Only then, it can be interpreted as a measure of prudence with respect

to a precautionary savings demand. From the description of the empirical

approach applied by Dynan (1993), it does not seem like this is taken into

account. In addition, the estimations of 1/ρr (the coefficients of (ri − δ)/(1 +

ri)) and its large standard errors suggest that the sign of ρr is not necessarily

positive.
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C Shortcomings of Parametric Utility Functions for the
Study of Higher Order Risk Preferences

Widely used parametric functions are not suited for (empirically) studying

higher order risk preferences, because they are too stylized to possess the

flexibility to combine any shape of the utility function with any shape of

the second, third and higher order derivatives. This is in particular true for

utility functions belonging to the family of switching sign utilities (i.e. func-

tions where sgn(u(n)) = − sgn(u(n−1))). According to these functions, a risk-

averse individual (negative second derivative) would always be classified as

prudent (positive third derivative) and temperant (negative fourth deriva-

tive), whereas risk-seeking individuals (positive second derivative) would

always be classified as imprudent and intemperant (negative third and pos-

itive fourth derivative, respectively).

We illustrate this shortcoming for the power (CRRA) utility family.

Power utility family For x > 0, the family is defined as

u(x) =


xb if b > 0

ln(x) if b = 0

−xb if b < 0.

Note that, if u is an interval scale (meaning u is unique up to unit and

level), it can be multiplied by any positive factor and any constant can

be added without affecting any relevant empirical aspect (Wakker, 2008).

This is, in mathematical terms, a monotonic transformation, that does not

affect the maximization process. In particular, u as defined above is then

equivalent to alternative formulations (with restricted domain, i.e. where

b < 1) such as

u(x) =

x1−η−1
1−η if η > 0, η 6= 1

ln(x) if η = 1,

where b = η − 1.
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Thus, we analyze the shape of utility and its derivatives according to

the power family as defined in its general definition. The second derivative

is given by

u′′(x) =


∂
∂xbx

b−1 = b(b − 1)xb−2 if b > 0

∂
∂x

1
x = − 1

x2
if b = 0

∂
∂x − bxb−1 = −b(b − 1)xb−2 if b < 0.

Note that as x > 0, the first derivative of u is positive for all b ∈ R. The

second derivative is negative and the utility itself concave for b < 1 and

thus, in the expected utility framework would correspond to a risk averse

individual.

The third derivative is given by

u′′′(x) =


∂
∂xb(b − 1)xb−2 = b(b − 1)(b − 2)xb−3 if b > 0

∂
∂x −

1
x2

= 1
x3

if b = 0

∂
∂x − b(b − 1)xb−2 = −b(b − 1)(b − 2)xb−3 if b < 0.

For b ≤ 0, we see immediately that the third derivative is positive. For 0 <

b < 1 and b > 2, we have a positive third derivative. For 1 < b < 2, we have

a negative third derivative.

Thus, only for b in the interval (1, 2), could the third derivative be nega-

tive. On that interval however, the second derivative is always positive, and

thus—using this utility family—an imprudent individual can never be risk

averse. Similarly, a risk averse individual can never be imprudent.

Exponential utility family We now turn to the exponential (CARA) utility

family. Assuming u is unique up to unit and level, the formulation of this

family again does not depend on multiplicative factors or the addition of

constants (Wakker, 2008).

We define the exponential family for x > 0 as:

u(x) =

(1 − e−bx)/b if b 6= 0

x if b = 0.
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Its derivatives are given by

u′′′(x) =

 ∂2

∂x2
e−bx = ∂

∂x − be−bx = (−b)2e−bx if b 6= 0

∂2

∂x2
1 = ∂

∂x0 = 0 if b = 0.

We see that the third derivative can never be negative and thus, assum-

ing this utility family, we would never classify an individual as imprudent.

Further, the fourth derivative will always have the same sign as the second

derivative, and so we can never classify an individual as intemperant and

risk averse relying on the utility functions of this family.

Expo-Power Family The expo-power family has been proposed by Abdel-

laoui, Barrios, and Wakker (2007) and was used e.g., by Holt and Laury

(2002). It exhibits an increasing measure of relative risk aversion in x and a

decreasing measure of absolute risk aversion in x for 0 < b < 1 and x in the

interval [0, 1] (resulting from normalizations of x, see Abdellaoui, Barrios,

and Wakker, 2007). On the interval (0, 1], it is defined by

u(x) =

−e−x
b/b if b 6= 0

−1/x if b = 0.

We take a look at its derivatives:

u′′(x) =

 ∂
∂xe
−xb/bxb−1 = e−x

b/bxb−2
(
−xb + b − 1

)
if b 6= 0

∂
∂x1/x2 = −2/x3 if b = 0.

For b = 0, the second derivative is always negative and the function itself is

concave. For b 6= 0, the sign of the second derivative depends on the sign of

−xb + b− 1. It is negative for b− 1 < xb. As x ∈ (0, 1], this is the case for

b < 1. Contrarily, for b > 2, the above term is always positive and so is the

second derivative, implying a convex utility function.

Let’s now turn to the third derivative:

u′′′(x) =

 ∂
∂xu

′′(x) = e−x
b/bxb−3

(
b2 + x2b + 3xb − 3b(xb + 1) + 2

)
if b 6= 0

∂
∂xu

′′(x) = 6/x4 if b = 0.

For b 6= 0, the sign of the third derivative depends on the term b2 + x2b +

3xb − 3b(xb + 1) + 2. Numerically, one finds that this term is uniformly neg-

ative in x ∈ (0, 1] for values of b between roughly 1.27 and 2. That is, for
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a risk-loving or a risk-averse individual (i.e. individuals to which a parame-

ter value of r < 1 and r > 2 correspond, respectively) there is at least one

point x ∈ (0, 1], for which the third derivative is positive. Therefore, neither

a risk averse nor a risk loving individual will ever be classified as imprudent

according to this utility family.

D Methodology: Details

D.1 An Introduction To Spline Regression

For spline regression, the domain of definition [xmin, xmax] is divided into

k − 1 subintervals, where the k boundaries are called inner knots. Local

basis functions, defined depending on the knots, are placed (often equidis-

tantly, thus independent of the data) such that they cover the domain of

definition.

One such choice of basis functions, so called B-splines, have proven to

be numerically stable and efficient for computation.32 A single B-spline of

degree33 p is a combination of p+ 1 polynomial pieces of degree p that are

joined p− 1 times continuously differentiable at the knots. It is different

from zero only on a small subinterval of the domain of definition (spanned

by p+ 2 knots) and zero otherwise. Figure 7 illustrates single B-splines of

degree p = 1 and degree p = 2. For illustration purposes, the first p+ 2 inner

knots are indicated by the gray vertical lines at x = 0.1, 0.2 and for the

B-spline of degree 2 additionally at x = 0.3.

We use a B-spline basis consisting of k + p− 1 equally spaced B-splines

spanned by k + 2p knots; see Figure 2(a) for an illustration of an ex-

emplary B-splines basis. Also in Figure 2(a) we see that at any point

x in the interval [xmin, xmax], a B-spline basis decomposes 1, i.e. ∀x ∈
[xmin, xmax] :

∑k+p−1
j=1 Bj(x, p) = 1, where we denote the value of the jth

B-spline (the B-spline with support interval starting at knot j) at x with

Bj(x, p) and where p is the degree of the B-spline. For regressing the y-

values of a set of N data points (xi, yi) on the B-spline basis (Bj)j=1,...,k+p−1,

32 De Boor (1987) gives a recursive formula for computation of B-splines from a lower
degree B-spline Since a B-spline of degree 0 is just a constant between subsequent knots,
this facilitates computation. However, B-splines can also be constructed as linear combi-
nations of truncated power functions. Eilers and Marx (2010) show that it is numerically
stable. We use the latter approach for computation of our B-spline basis.

33 Note that, in the B-spline literature, usually order is used instead of degree,
where order = degree + 1 . In the P-spline literature however, degree is preferred, as order
mostly is referring to the order of differences used in the penalty.
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(a) B-spline of Degree p = 1 (b) B-spline of Degree p = 2

Figure 7. Illustration of a Single B-spline and the Corresponding B-spline Basis

we evaluate the k + p− 1 B-splines at the given x-values, which yields

the (N × (k + p− 1)) design matrix B. In matrix notation, the regression

approach is to minimize

QB(α) = ‖y − Bα‖2, (15)

and the result is a fitted curve ŷ(x) =
∑k+p−1

j=1 âjBj(x, p).

A particularly useful feature of B-spline regression for our problem is

established by the following formula for the m-th derivative of a B-spline

function f(x):

f (m)(x) =
1

hm

k+p−1∑
j=m+1

4majBj(x, p − m), (16)

where h is the knot distance, and 4maj = 4(4m−1aj) with 4aj := (aj −
aj−1). For a derivation of this result, see Appendix D.2 or De Boor (1987,

Ch. 10).

Equation (16) illustrates that the derivatives of a spline function can be

computed conveniently by differencing its B-spline coefficients. Once a fitted

curve is established, its derivatives are automatically obtained without the

need to determine them numerically.
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D.2 Derivatives of a B-spline Function

As laid out in De Boor (1987, Ch. 10, equations (12) & (16)), the derivative

of a B-spline function f(x) is given by

f (1)(x) =
∂f(x)

∂x
=

∂

∂x

k+p−1∑
j=1

ajBj(x, p) =

k+p−1∑
j=1

aj
∂

∂x
Bj(x, p)

=

k+p∑
j=1

(aj − aj−1)
1

h
Bj(x, p − 1) =

1

h

k+p∑
j=1

4ajBj(x, p − 1),

(17)

where h is the knot distance, and 4aj := (aj − aj−1), a0 := 0 and ak+p := 0.

Note that, sticking to the indices, the B-splines Bj(x, p− 1) vanish on the

interval [xmin, xmax] for j < 2 and j > k + p− 1. Accounting for this fact

and iteratively applying (17) yields:

f (m)(x) =
1

hm

k+p+m−1∑
j=1

4majBj(x, p − m)

=
1

hm

k+p−1∑
j=m+1

4majBj(x, p − m), (18)

where 4maj = 4(4m−1aj) is the m-order difference of the sequence (aj).

D.3 Choice of Penalty: Jointly Smoothing Multiple Derivatives

For their exposition of P-splines, Eilers and Marx (1996) use an unspecified

order d of penalization. A penalty based on the second derivative was intro-

duced in the smoothing context by Reinsch (1967), mainly “because it leads

to a very simple algorithm”. Probably, a penalty of order 2 is still the most

common penalty used. However, Eilers and Marx (1996) note that, besides

convenient computation, there is no specific reason for this choice.

Here, we are interested in smoothing the utility function itself, and ad-

ditionally the third and the fourth derivative of the utility function. In this

regard, Eilers and Marx (1996) note that the “kth difference penalty is

a good discrete approximation to the integrated square of the kth deriva-

tive”34. Further, for a penalty of order d, the fitted curve approaches a poly-

34 They illustrate this point with a penalty on second order differences.
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nomial of degree d− 1, as the penalty increases (Eilers and Marx, 1996).

Lastly, interpolation is affected by the order of the penalty: With a penalty

of order d, interpolation of utility is of degree 2d− 1. This means that the

third derivative of the interpolating curve has degree 2d− 4 and the fourth

derivative has degree 2d− 5 (Eilers and Marx, 2010).

Considering these aspects suggests using a penalty of order 3 or 4, where

the latter is to be preferred for the limiting behavior of the spline function

when the penalty increases and for the degree of the fourth derivative of the

interpolation curve. However, this choice leads to fluctuations in the third

derivative not caused by the data, so additionally introducing a penalty on

the third derivative is necessary.

The objective function then writes

QB(α) = ‖y − Bα‖2 + ω3‖D3α‖2 + ω4‖D4α‖2. (19)

Penalization of multiple orders has been applied in other studies, remark-

ably with a focus on the quality of prediction (i.e. interpolation): Marx and

Eilers (2002) introduced the use of multiple orders independently, including

a ridge penalty (corresponding to order d = 0) in addition to any penalty

order d = 1, 2, 3. Aldrin (2006) shows in a simulation experiment that the

prediction performance when penalizing both slope (d = 0) and curvature

(d = 2) is always at least as good as penalizing curvature only.

Our goal is to smooth the third and fourth derivative jointly correspond-

ing to using both penalties of order d = 3 and d = 4. When choosing an op-

timal parameter with respect to prediction quality, the third order penalty

and the fourth order penalty are to a high degree exchangeable. As the third

order differences of the B-spline coefficients generally will be much higher

than the fourth order differences, the third order penalty will in general

dominate the fourth order penalty, causing the effect of the latter to vanish

and resulting in unnecessary fluctuations of the fourth derivative. Using a

penalty of order d = 4 alone, however, results in unnecessary fluctuations of

the third derivative.

This issue has been dealt with by Eilers and Goeman (2004), who

present the first approach we are aware of to jointly smooth multiple or-

ders d > 0. They study how signals consisting of largely flat areas combined

with a sharp pulse can be smoothed. This phenomenon resembles to a cer-

tain degree the pattern of a considerable share of our utility functions, where

parts of nearly zero marginal utility follow parts of sharp increases or vice
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versa. Eilers and Goeman (2004) use a combination of a first and second

order penalty by setting ω2 = νω2
1, corresponding to penalty terms of order

d = 2 and d = 1, where they found by trial and error that ν = 1/4 works

well.

We consider a couple of hundreds of utility functions, and in this case, vi-

sual inspection is clearly too time-consuming. Furthermore, the choice of ν

should be independent of subjective judgment as it could affect the classifica-

tion and intensities of risk preferences. Therefore, we develop a data-driven

approach.

We propose a solution in which the fourth order penalty ‘drives the

shape’ of the utility function while the third order penalty is limited to

avoiding unnecessary fluctuations in the third derivative. This is achieved

by using one penalty parameter, appropriately scaled for both orders.

Specifically, we choose the scaling parameter ν such that

ω4‖D4α0‖ ≈ νω4‖D3α0‖,

i.e. such that the penalty terms have approximately equal weight, where we

used ν = 0.001 for a computation of ‖D3α0‖. Then, we set ω3 = νω4/5, to

ensure ω4‖D4α‖ > ω3‖D3α‖.
The choice of ν for a first computation of ‖D3α0‖ practically neglects

any third order penalty and a good fit using solely the fourth order penalty

is achieved. Then, ν is set as a fifth of the ratio of the sum of absolute

differences of the fourth order differences of the B-spline coefficients over

the third order differences. The ratio measures how much stronger a third

order penalty will affect the smoothing process as compared to a fourth

order penalty and will in most cases be the maximum factor needed to

weight both penalties equally. To avoid the third order penalty dominating

the fourth order penalty, we divide this ratio by five, which proved to yield

the desired behavior.

Thus, we elaborate an approach which is to be preferred when visual

inspection is inappropriate—be it for objectivity reasons or for time con-

straints impeding the researcher to visually investigate a large amount of

individual curves.
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D.4 Incorporating a Monotonicity Constraint In P-Spline Regression

The rationale of the approach by Bollaerts, Eilers, and Mechelen (2006) to

approximately incorporate a monotonicity constraint in P-Spline regression

is simple: Although in P-Spline regression, a penalization term is added to

the objective function, the predicted function is still a B-spline function,

and thus, its derivatives are given by equations (17) and (16). From these

formulae, a sufficient condition for the first derivative to be positive and the

utility to be a monotone increasing function can be easily deduced: Since h,

the knot distance, is positive and B non-negative for all x, p and j, all 4aj
have to be positive.

Thus, differences of coefficients of the B-splines that are negative have to

be penalized, whereas positive differences do not, which makes the penalty

asymmetric. This penalization is achieved with the following penalty:

k+p−1∑
j=2

w(α)j(4aj)2,

where

w(α)j =

0, if 4aj ≥ 0

1, otherwise.

The objective function (19) now writes

QB(a) = ‖y − Bα‖2 + νω4‖D3α‖2 + ω4‖D4α‖2 + κ‖W 1/2D1α‖2

(20)

which—in case QB is convex—is minimized if

(B′B + νω4D
′
3D3 + ω4D

′
4D4 + κD′

1WD1)α̂ = B′y,

where y, B, Dd and ω4 are defined as in (19) and ν as determined in Section

D.3. W and W 1/2 are diagonal matrices with elements w(α)j and
√
w(α),

respectively, and the impact of the constraint penalty on the solution is

tuned by a sufficiently high35 (positive) constraint parameter κ.

Bollaerts, Eilers, and Mechelen (2006) show that QB is convex in α and

propose using a Newton-Raphson procedure to find an optimal solution. We

35 We chose κ = 108, Bollaerts, Eilers, and Mechelen (2006) chose κ = 106 in their ap-
plication.
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follow this suggestion, stopping the algorithm after 10 iterations, which led

to a monotone increasing function in 99.5% of all cases.

D.5 Choosing the Degree of Smoothness

Eilers and Marx (1996) suggest two classical objective and data-driven se-

lection criteria, AIC and (leave-one-out) cross validation, for the choice of

the degree of smoothness of the P-spline function to be established as tuned

by ω in order to balance between fidelity to the data and smoothness.

Cross validation (CV) is independent of distributional or asymptotic

assumptions and “should be preferred to any model selection procedure

relying on assumptions which are likely to be wrong” (Arlot and Celisse,

2010). In our case, for the computation of AIC, at least the asymptotic

argument that the approximation of standard errors relies on is unlikely to

hold for our moderate number of data points. We thus apply cross validation

as selection criteria for choosing ω4 as in (20). The principle of CV is simple:

The model is fit with only a part of the data and the remainder is used to

compute prediction errors. With leave-one-out CV, for N data-points, the

model is fit N times, and each time, one data point is left out and used for

computation of the prediction error. Then, the model—in our setting the

penalty parameter—is chosen that minimizes the average prediction error

over N predictions. For this case, exact formulae for convenient computation

exist without the need to actually fit the model N times (Eilers and Marx,

1996; Eilers, Marx, and Durbán, 2015).

In literature, however, it has been noted that leave-one-out CV is not the

ideal choice regarding model choice (see e.g., Kohavi, 1995, and the refer-

ences therein). One argument against leave-one-out CV is that the probabil-

ity of choosing the model with the best predictive quality does not converge

to 1 as the number of observation increases (Shao, 1993). Further, Eilers,

Marx, and Durbán (2015) warn that leave-one-out CV severely overfits the

data in case of correlated observations.

We address this issue with the following strategy: As proposed in lit-

erature for the purpose of model identification (e.g., Arlot and Celisse,

2010; Shao, 1993), we increase the number of points left out for prediction,

which—fortunately, with a maximum of 9 elicited points—is computation-

ally still feasible to do exhaustively. More specifically, we perform permuted
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leave-k-out cross validation (Aldrin, 2006): We choose the degree of smooth-

ness, that minimizes

1

V

V∑
v=1

∑
i∈I(v)

{yi − ŷ(−v)(xi)}2, (21)

where V =
(
N
k

)
is the number of possibilities to chose k out of N points for

validation, I(v) is the set containing the vth choice of k points for validation

and ŷ−v(xi) the prediction of yi, obtained by estimating the model using all

points but those in I(v).

Increasing the number of points left out for prediction results in less

‘weight’ for a single point; it can therefore be seen as a mean of error correc-

tion, as long as the remaining points are sufficient to establish a meaningful

utility curve. As pointed out in the main text, reversal rates of one third

are common in choice tasks36. For this reason, we perform ‘leave-at-least-

1/3N -out’ cross validation. In case the maximum number of utility points

was elicited for the individual under study,37 this choice results in leave-3-

out CV. This strategy also accounts for correlated observations (Arlot and

Celisse, 2010, Chapter 8.1) possibly resulting from the chain structure of

the experiment.

In addition, we develop and apply a data-driven minimum for the penalty

parameter to rule out overfitting resulting from large distances between util-

ity points. We compute the number of balls with radius equal to the knot

distance needed to cover the elicited points. For a minimum of two balls,

overfitting the data is impossible and the method has to compromise be-

tween data-fidelity and smoothness. For a maximum of nine balls, however,

and for low values of ω4, the fitted function usually perfectly predicts ev-

ery data point used for estimation, and minimizes the prediction error for

those points left out for validation. Thus, according to CV, the minimal ω4

is chosen in those cases—but the fitted function is considerably overfitting

the data. We impede this by setting a higher minimal penalty parameter in

those cases.

36 See e.g.,Abdellaoui (2000), Abdellaoui, Bleichrodt, and Paraschiv (2007), Etchart-
Vincent (2004), and Fennema and Van Assen (1998)

37 Note that we excluded the points (0, 0) and (1, 1) for computing the average prediction
error.
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Specifically, for individual i, the minimal smoothness parameter is cal-

culated using the following formula:

ωmin
4,i = (bi ∗ (nmax/ni) − 1)2.5 (22)

where bi is the number of balls with radius equal to the knot-distance needed

to cover all elicited utility points of individual i, nmax is the maximum

number of elicited points possible for all individuals (we have nmax = 9)

and ni is the number of elicited points for individual i.

If the maximum of 9 points are elicited, and all points have a pair-

wise distance above the knot-distance, then the number of balls to cover

all points will be 9, and the minimal value for ω4,i will be roughly 180. This

value is still low enough to allow the fitted function to be a polynomial

of degree p > 3 = d− 1, but in most cases, it is high enough to prevent

overfitting. In some cases, the data is overfit, indicating that the minimal

smoothness parameter is chosen conservatively. If all elicited points in (0, 1)

lie close together, the minimal smoothness parameter ω4,i would be 1, i.e. a

minimal smoothness parameter that results in hardly any penalization.

For some individuals, less than 9 utility points were elicited, since due

to the implementation of the protocol followed (Abdellaoui, Bleichrodt, and

Paraschiv, 2007), in some choice tasks, one option is stochastically domi-

nated and the resulting utility point has to be erased following, (e.g., Ab-

dellaoui, 2000). If the number of elicited utility points is less or equal to

the order of penalty, we have to perform leave-one-out CV according to the

formula by Eilers and Marx (1996). In those cases, overfitting is only pre-

vented by the increased minimal ω4 in case of sparse information per data

knot as expressed by formula (22).
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E Full Tables and Robustness Tests

E.1 Validation

Table 10. Distribution of risk and prudence attitude

Panel A: Online Risk averse Risk loving All

Non-prudent % 12.30 5.75 18.04
Prudent % 62.20 19.76 81.96
All % 74.50 25.50 100.00

Panel B: Lab Risk averse Risk loving All

Non-prudent % 16.67 4.39 21.05
Prudent % 71.05 7.89 78.95
All % 87.72 12.28 100.00
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Table 11. Prediction of (Higher Order) Risk Premia with Utility-Based Intensity Measures

Panel (a): Laboratory

Risk Premium
Prudence Premium

(EW)
Temperance Premium

(EW)

(1) (2) (1) (2) (1) (2)

AP Risk (−u′′/u′) 0.790*** 0.255***
(0.087) (0.035)

CE Prudence (u′′′/u′) 0.807*** 0.169***
(0.126) (0.048)

DE Temperance (−u(iv)/u′) 0.695*** 0.201*
(0.118) (0.081)

Cognitive Abilities 0.795*** 0.874*** 0.888***
(0.026) (0.043) (0.046)

Num.Obs. 114 114 60 60 60 60
R2 0.624 0.969 0.420 0.927 0.168 0.878
R2 Adj. 0.620 0.968 0.410 0.924 0.153 0.874

Panel (b): Online

Risk Premium
Prudence Premium

(EW)
Temperance Premium

(EW)

(1) (2) (1) (2) (1) (2)

AP Risk (−u′′/u′) 0.650*** 0.489***
(0.027) (0.023)

CE Prudence (u′′′/u′) 0.518*** 0.364***
(0.055) (0.047)

DE Temperance (−u(iv)/u′) 0.190*** 0.108*
(0.043) (0.042)

Cognitive Abilities 0.496*** 0.477*** 0.569***
(0.012) (0.028) (0.026)

Num.Obs. 992 992 308 308 308 308
R2 0.422 0.642 0.277 0.486 0.042 0.364
R2 Adj. 0.421 0.642 0.275 0.482 0.038 0.360

Notes: The utility-based intensity measures of higher order risk preferences, i.e., the Arrow-
Pratt coefficient of risk aversion, the Crainich-Eeckhoudt coefficient of prudence and the
Denuit-Eeckhoudt coefficient of temperance result from our method. Prudence and tem-
perance premia are elicited using the method by Ebert and Wiesen (2014). Risk premium
is the certainty equivalent of the lottery (0, 0.5, 140) subtracted from 1. All measures are
expressed in standard deviations.
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 12. Prediction of (Higher Order) Risk Premia with Utility-Based Intensity Measures

Panel (a): Laboratory

Prudence Temperance

Pooled N DS Pooled N DS

Coef. 0.127*** 0.104*** 0.155*** 0.080** 0.062** 0.102*
(0.018) (0.017) (0.034) (0.024) (0.021) (0.048)

Num.Obs. 114 59 55 114 59 55
R2 0.290 0.389 0.270 0.082 0.144 0.075
R2 Adj. 0.283 0.379 0.256 0.074 0.130 0.058

Panel (b): Online

Prudence Temperance

Pooled N DS Pooled N DS

Coef. 0.164*** 0.178*** 0.151*** 0.068*** 0.060*** 0.077***
(0.008) (0.014) (0.010) (0.012) (0.017) (0.018)

Num.Obs. 684 345 339 684 345 339
R2 0.322 0.315 0.335 0.046 0.035 0.060
R2 Adj. 0.321 0.313 0.333 0.044 0.033 0.057

Notes: This table reports results from OLS regressions, where the dependent variables
are the utility-based intensity measures of higher order risk preferences, i.e., the Crainich-
Eeckhoudt coefficient of prudence (columns 1-3) and the Denuit-Eeckhoudt coefficient of
temperance (columns 4-6), as resulting from our method (see Section 3). Explanatory
variables are the number of prudent and temperant choices, respectively, in the risk ap-
portionment tasks as implemented by Noussair, Trautmann, and Kuilen (2014) with the
“dice-design” (columns 2 and 4, labelled ‘N’) and by Deck and Schlesinger (2010) with
the “fortune-wheel design” (columns 3 and 6, labelled ‘DS’). Prudence and temperance
intensity measures are expressed in standard deviations.
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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E.2 Bogotá saving experiment

Table 13. Net Savings and Prudence (C&E) Showing Coe�cients on Covariates

Full Sample Risk Averse Risk Loving

(1) (2) (3) (4) (5) (6) (7)

Prudence (C&E) 1.140??? 1.161??? 1.114?? 1.707??? 1.468??? 0.560 0.651
(0.422) (0.422) (0.431) (0.641) (0.559) (0.601) (0.724)

Risk Aversion (A&P) 3.329? 3.291 0.637 6.038
(2.002) (2.134) (3.120) (5.325)

Male -7.647 -9.299 -2.863
(6.847) (8.889) (10.34)

Age 0.101 0.0610 0.426?

(0.152) (0.186) (0.218)

Financial literacy -1.601? 0.390 -3.841??

(0.933) (1.109) (1.702)

BMI -0.161 -0.846 0.783
(0.618) (0.809) (1.000)

Adult HH members -2.588 -5.937? -0.357
(1.868) (3.196) (2.720)

Children HH members 0.192 1.434 0.0408
(2.243) (2.934) (3.564)

Income -0.695 2.053 -2.382
(1.392) (1.909) (2.085)

Impatience 0.0535 0.0442 0.170
(0.169) (0.240) (0.255)

Increase in patience 0.246 0.338 0.196
(0.243) (0.288) (0.396)

Planning horizon ref. ref. ref.

– Next months 9.439? 3.429 16.65?

(5.138) (6.698) (8.949)

– Next year -1.060 2.360 -4.154
(9.930) (15.58) (13.28)

– Next two to five years 13.02? 5.171 31.24??

(6.971) (8.873) (14.90)

– 5 or more years 11.20? 7.431 15.19
(6.667) (11.00) (10.89)

Constant -14.69??? -14.64??? -0.453 -11.78??? 17.46 -17.04??? -44.73
(2.722) (2.705) (22.32) (3.443) (30.90) (4.321) (29.45)

Education No No Yes No Yes No Yes

Observations 567 567 554 270 267 279 271

Notes: This table reports the results of ordinary least squares regressions on net savings.
Prudence (C&E) is the Crainich-Eckhoud measure of prudence. Risk Aversion (A&P)
is the Arrow-Pratt measure of risk aversion. The controls are time preferences, gender,
age, financial literacy, body mass index (BMI), household members (adults and children),
income as measured as the average income per household member, planning horizon and
education. Income in 100k Colombian pesos. We account for potential heteroskedasticity
by robust standard errors. Results of t-tests indicated at following significance levels ? p <
0.10; ?? p < 0.05; ??? p < 0.01.
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Table 14. Net Savings and Prudence (Kimball) Showing Coe�cients on Covariates

(1) (2) (3) (4) (5) (6)

Prudence (Kimball) 12.73? 7.236 7.245
(7.428) (4.774) (6.190)

Prudence (C&E) 2.191? 1.096? 1.293
(1.206) (0.619) (0.795)

Risk Aversion (A&P) 12.55 13.47 10.24 10.18
(9.618) (10.36) (9.797) (9.678)

Male 6.227 5.018
(10.17) (9.790)

Age 0.164 0.190
(0.333) (0.333)

Financial literacy 0.915 0.798
(2.237) (2.213)

BMI -1.093 -1.244
(1.081) (1.156)

Adult HH members -4.062 -4.327
(4.260) (4.258)

Children HH members 2.146 2.291
(4.330) (4.326)

Income 4.647? 4.850?

(2.756) (2.808)

Impatience 0.742?? 0.745??

(0.363) (0.360)

Increase in patience -0.0836 -0.109
(0.219) (0.216)

Planning horizon ref. ref.

– Next months -2.176 -0.177
(15.66) (15.13)

– Next year 32.58 33.40
(20.36) (21.08)

– Next two to five years 10.77 9.571
(17.66) (15.76)

Constant -14.31??? -15.79??? -33.37? -35.49? -37.68 -33.41
(5.178) (5.937) (19.03) (20.54) (42.81) (42.04)

Education No No No No Yes Yes

Observations 120 120 120 120 119 119

Notes: This table reports the results of ordinary least squares regressions on net savings.
The prudence measure by Kimball is only defined for subjects that are risk averse at all
points of evaluation, which reduces the number of observations to 120. For comparison,
columns (2), (4) and (6) show the results for the C&E measure for the same sample.
The controls are time preferences, gender, age, financial literacy, body mass index (BMI),
household members (adults and children), income as measured as the average income per
household member, planning horizon and education. Income in 100k Colombian pesos.
We account for potential heteroskedasticity by robust standard errors. Results of t-tests
indicated at following significance levels ? p < 0.10; ?? p < 0.05; ??? p < 0.01.
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Table 15. Net Savings and Prudence (C&E) for Non-zero Net Savings Showing Coe�cients
on Covariates

Full Sample Risk Averse Risk Loving

(1) (2) (3) (4) (5) (6) (7)

Prudence (C&E) 2.297??? 2.435??? 2.749??? 2.992?? 2.629??? 1.561 3.565??

(0.861) (0.863) (0.804) (1.168) (0.974) (1.358) (1.712)

Risk Aversion (A&P) 7.030? 10.25?? -0.207 17.00
(4.033) (4.608) (6.468) (11.98)

Male -17.84 -13.73 -13.11
(14.30) (17.98) (23.27)

Age -0.179 -0.660 0.858
(0.380) (0.472) (0.575)

Financial literacy -3.645? 2.987 -7.631??

(2.024) (3.019) (2.963)

BMI 0.379 -0.615 2.338
(1.314) (1.700) (2.451)

Adult HH members -9.435?? -9.395 -9.444
(4.334) (5.929) (7.890)

Children HH members 1.379 4.760 5.386
(4.531) (5.790) (7.426)

Income 0.264 3.970 -1.639
(2.272) (3.577) (3.549)

Impatience -0.0205 -0.360 0.547
(0.358) (0.541) (0.561)

Increase in patience 0.319 0.608 0.329
(0.453) (0.610) (0.748)

Planning horizon ref. ref. ref.

– Next months 14.86 0.637 31.79?

(10.57) (13.85) (18.92)

– Next year -2.107 4.974 -17.91
(17.67) (26.44) (19.41)

– Next two to five years 40.30??? 89.71?? 71.81??

(15.06) (38.82) (34.55)

– 5 or more years 27.02? 35.82
(15.54) (22.27)

Constant -31.94??? -31.54??? -38.58 -23.41??? 51.30 -37.80??? -202.0?

(5.712) (5.586) (67.88) (6.700) (75.05) (9.305) (115.8)

Education No No Yes No Yes No Yes

Observations 257 257 249 124 124 127 120

Notes: This table reports the results of ordinary least squares regressions on net savings.
The sample is restricted to subjects who have non-zero net-savings. Prudence (C&E) is
the Crainich-Eckhoud measure of prudence. Risk Aversion (A&P) is the Arrow-Pratt
measure of risk aversion. The controls are time preferences, gender, age, financial literacy,
body mass index (BMI), household members (adults and children), income as measured
as the average income per household member, planning horizon and education. Income
in 100k Colombian pesos. We account for potential heteroskedasticity by robust standard
errors. Results of t-tests indicated at following significance levels ? p < 0.10; ?? p < 0.05;
??? p < 0.01.
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Table 16. Net Savings, Firm Closures and Prudence (C&E & Kimball) Showing Coe�cients
on Covariates

Full Sample
C&E

Risk Averse
C&E

Strictly Risk Averse
Kimball

(1) (2) (3) (4) (5) (6)

Income risk -1.746 -1.479 -1.863 -1.399 -4.985 -4.154
(2.354) (2.405) (2.870) (3.031) (6.150) (7.472)

Prudence 1.240??? 1.115?? 2.224??? 2.036??? 18.37? 9.263
(0.461) (0.471) (0.769) (0.739) (9.852) (9.574)

Prudence
× Income risk 1.015?? 1.066?? 0.856 1.037? 9.654 12.99

(0.424) (0.416) (0.600) (0.566) (9.694) (9.948)

Risk Aversion (A&P) 4.644? 2.231 18.98
(2.408) (4.460) (18.73)

Male -10.50 -16.27 10.19
(8.132) (10.95) (13.49)

Age -0.00373 -0.155 -0.269
(0.194) (0.275) (0.468)

Financial literacy -1.469 1.966 3.523
(1.208) (1.465) (3.197)

BMI 0.0508 -1.284 -1.391
(0.721) (1.146) (1.473)

Adult HH members -1.627 -3.763 -1.443
(2.026) (3.145) (3.969)

Children HH members -2.266 -1.202 -2.708
(2.506) (3.452) (5.328)

Income -0.889 3.040 5.866
(1.637) (2.577) (4.058)

Impatience -0.103 -0.127 0.558
(0.181) (0.325) (0.406)

Increase in patience 0.381 0.431 -0.259
(0.297) (0.400) (0.329)

– Next months 9.617 7.929 12.88
(6.426) (9.350) (24.90)

– Next year 1.775 14.00 53.13
(10.76) (17.33) (32.59)

– Next two to five years 14.13 27.74 55.94?

(9.795) (25.44) (29.22)

– 5 or more years 13.87 -6.131
(9.759) (11.93)

Constant -15.33??? -6.033 -12.58??? 20.66 -16.45?? -61.69
(2.995) (29.66) (4.158) (39.63) (6.542) (71.05)

Controls No Yes No Yes No Yes

Observations 471 459 218 215 93 92

Notes: This table reports the results of ordinary least squares regressions on net savings.
Prudence is the Crainich-Eckhoud measure of prudence in columns (1) to (4) and the
Kimball measure in columns (5) and (6). Risk Aversion (A&P) is the Arrow-Pratt measure
of risk aversion. Income risk is measured as the ratio of closed to existing businesses
in 2013 in the working sector an individual was usually working in at the time of the
survey. Prudence and income risk are centered. The controls are time preferences, gender,
age, financial literacy, body mass index (BMI), household members (adults and children),
income as measured as the average income per household member, planning horizon and
education. Income in 100k Colombian pesos. We account for potential heteroskedasticity
by robust standard errors. Results of t-tests indicated at following significance levels ? p <
0.10; ?? p < 0.05; ??? p < 0.01.
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Table 17. Net Savings, Firm Closures and Prudence (C&E) Showing Coe�cients on
Covariates

Full Sample Risk Averse Risk Loving

(1) (2) (3) (4) (5) (6)

Income risk -1.746 -1.479 -1.863 -1.399 0.768 2.146
(2.354) (2.405) (2.870) (3.031) (3.293) (3.412)

Prudence (C&E) 1.240??? 1.115?? 2.224??? 2.036??? 0.298 0.199
(0.461) (0.471) (0.769) (0.739) (0.613) (0.660)

Prudence (C&E)
× Income risk 1.015?? 1.066?? 0.856 1.037? 0.984? 0.925

(0.424) (0.416) (0.600) (0.566) (0.588) (0.566)

Risk Aversion (A&P) 4.644? 2.231 9.500?

(2.408) (4.460) (5.666)

Male -10.50 -16.27 -4.157
(8.132) (10.95) (12.26)

Age -0.00373 -0.155 0.391
(0.194) (0.275) (0.244)

Financial literacy -1.469 1.966 -4.361??

(1.208) (1.465) (2.085)

BMI 0.0508 -1.284 1.928?

(0.721) (1.146) (0.994)

Adult HH members -1.627 -3.763 0.386
(2.026) (3.145) (3.102)

Children HH members -2.266 -1.202 -3.604
(2.506) (3.452) (3.174)

Income -0.889 3.040 -3.419
(1.637) (2.577) (2.248)

Impatience -0.103 -0.127 0.0365
(0.181) (0.325) (0.237)

Increase in patience 0.381 0.431 0.270
(0.297) (0.400) (0.437)

Planning horizon ref. ref. ref.

– Next months 9.617 7.929 12.01
(6.426) (9.350) (9.271)

– Next year 1.775 14.00 -12.33
(10.76) (17.33) (14.24)

– Next two to five years 14.13 27.74 33.20?

(9.795) (25.44) (18.35)

– 5 or more years 13.87 -6.131 19.77
(9.759) (11.93) (15.42)

Constant -15.33??? -6.033 -12.58??? 20.66 -17.37??? -53.10
(2.995) (29.66) (4.158) (39.63) (4.519) (33.94)

Controls No Yes No Yes No Yes

Observations 471 459 218 215 237 230

Notes: This table reports the results of ordinary least squares regressions on net savings.
The sample is restricted to subjects who have non-zero net-savings. Prudence (C&E) is the
Crainich-Eckhoud measure of prudence. Risk Aversion (A&P) is the Arrow-Pratt measure
of risk aversion. Income risk is measured as the ratio of closed to existing businesses
in 2013 in the working sector an individual was usually working in at the time of the
survey. Prudence and income risk are centered. The controls are time preferences, gender,
age, financial literacy, body mass index (BMI), household members (adults and children),
income as measured as the average income per household member, planning horizon and
education. Income in 100k Colombian pesos. We account for potential heteroskedasticity
by robust standard errors. Results of t-tests indicated at following significance levels ? p <
0.10; ?? p < 0.05; ??? p < 0.01.
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Table 18. Net Savings, Firm Closures and Prudence (C&E) for Non-zero Net Savings
Showing Coe�cients on Covariates

Full Sample Risk Averse Risk Loving

(1) (2) (3) (4) (5) (6)

Income risk -0.959 -0.760 -0.562 0.374 3.103 -0.0879
(3.959) (4.329) (4.299) (6.526) (5.844) (6.291)

Prudence (C&E) 2.247?? 2.484??? 3.628??? 3.478??? 0.856 2.309?

(0.871) (0.785) (1.289) (1.302) (1.302) (1.327)

Prudence (C&E)
× Income risk 1.551?? 1.841??? 1.433 1.702 1.574 2.398??

(0.683) (0.684) (0.935) (1.080) (0.988) (1.154)

Risk Aversion (A&P) 11.43?? 1.979 11.00
(4.615) (7.762) (10.39)

Male -25.27 -28.75 -19.87
(15.93) (21.98) (26.13)

Age -0.116 -0.631 0.913
(0.436) (0.653) (0.698)

Financial literacy -2.727 5.485 -7.977??

(2.272) (3.483) (3.374)

BMI 0.908 -0.860 4.629??

(1.383) (1.784) (2.314)

Adult HH members -9.051? -5.144 -7.627
(5.125) (7.019) (10.06)

Children HH members -1.777 -0.121 2.373
(4.964) (6.405) (6.734)

Income -0.724 2.981 -2.307
(2.578) (4.009) (3.928)

Impatience -0.335 -1.074 0.229
(0.373) (0.687) (0.509)

Increase in patience 0.697 0.880 0.801
(0.523) (0.700) (0.810)

Planning horizon ref. ref. ref.

– Next months 9.929 2.249 27.81
(13.33) (17.55) (21.05)

– Next year 0.588 12.86 -27.17
(17.11) (28.80) (24.58)

– Next two to five years 46.50?? 126.6?? 83.38?

(21.63) (51.44) (45.08)

– 5 or more years 33.90? 40.41
(18.62) (25.39)

Constant -30.33??? -56.16 -20.82??? 54.77 -36.02??? -252.6??

(5.829) (80.54) (7.246) (96.24) (9.216) (117.6)

Controls No Yes No Yes No Yes

Observations 231 223 111 111 114 107

Notes: This table reports the results of ordinary least squares regressions on net savings.
The sample is restricted to subjects who have non-zero net-savings. Prudence (C&E) is the
Crainich-Eckhoud measure of prudence. Risk Aversion (A&P) is the Arrow-Pratt measure
of risk aversion. Income risk is measured as the ratio of closed to existing businesses
in 2013 in the working sector an individual was usually working in at the time of the
survey. Prudence and income risk are centered. The controls are time preferences, gender,
age, financial literacy, body mass index (BMI), household members (adults and children),
income as measured as the average income per household member, planning horizon and
education. Income in 100k Colombian pesos. We account for potential heteroskedasticity
by robust standard errors. Results of t-tests indicated at following significance levels ? p <
0.10; ?? p < 0.05; ??? p < 0.01.
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F Validation Experiment: Instructions, Decision Tasks and
Exemplary Decision Screens

F.1 Risk Tasks

F.1.1 Certainty equivalents and utility mid-points.
Coin toss game

In the coin toss game, coins are tossed (resp. their toss is simulated

by the computer). Thereby the payment is determined. You can choose

between two options, called “Option L” (left) and “Option R” (right). An

example of a choice is given below:

A coin is tossed in both options. In this example, “Option L” yields 70$,

no matter if the coin lands with the white or the black side at the top. In

”Option R” there is something different in this example: Here you receive

140$, if the coin lands with the white side at the top. If the coin lands with

the black side on the top, you receive 0$ - therefore nothing.

Overall, we show you 18 decision situations in the coin toss game. The

amounts are different in each situation. In the end, only one choice (of the

coin toss game and the following games) will be selected by the computer

– this one determines the payment. You should therefore always choose the

option you prefer.

For entering your choice, please click the button “L” or “R” first and

then confirm your choice by clicking “Next”. If you have no more questions,

you can start by clicking “Next”.

F.1.2 Risk Apportionment: Prudence (Noussair2013).
1. dice game
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In the first dice game, a die is rolled (resp. a throw is simulated by

the computer). This determines the payment in this game. Again, you can

choose between two options, “Option L” (left) and “Option R” (right). In

both options a red die is rolled first. Additionally, in both options a black

die is rolled sometimes. An example of a choice is given below:

First, the red die is rolled. In this example, “Option L” and “Option R”

yield 100$, if the roll of the red die is 1, 2 or 3. If the roll of the red die is 4,

5 or 6, you receive 50$.

The black die is used sometimes. In the example, you see that the black

die is rolled, if the roll of the red die is 4, 5, or 6 in “Option L”, whereas in

“Option R” the black die is rolled if the roll of the red is 1, 2 or 3. The black

die determines, if an amount is added to the payment of the red die or if it

is subtracted. In the example, 20$ are added to the payment determined by

the red die, if the roll of the die is 1, 2 or 3. If the roll of the black die is 4,

5 or 6, 20$ are subtracted from the payment.

Overall, we show you 5 decision situations in the first dice game. The

amounts are different in each situation. In the end, only one choice (of the

first dice game and the other games) will be selected by the computer —

this one determines the payment. You should therefore always choose the

option you prefer.

For entering your choice, please click the button “L” or “R”. There is

no confirmation ensued. If you have no more questions, you can start by

clicking “Next”.

F.1.3 Risk Apportionment: Temperance (Noussair2013).

2. Dice game Additional to the red and the black die, in the second dice

game a white die is rolled in both options sometimes. An example of a

choice is given below:
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The black and the white die are used sometimes. In the example,

you can see that in “Option L” the white and the black die are rolled, if

the roll of the red die is 4, 5, or 6. In “Option R” the white die is rolled, if

the roll of the red die is 4, 5 or 6, and the black die is rolled, if the roll of

the red die is 1, 2 or 3. The white and the black die determine whether an

amount is added to or subtracted from the payment of the red die. In the

example, 25$ are added to the payment determined by the red die, if the

roll of the black die is 1, 2 or 3. If the roll of the black die is 4, 5 or 6, 25$

are subtracted from the payment. If the roll of the white die is 1, 2 or 3,

10$ are added to the payment determined by the red die. If the roll of the

white die is 4, 5 or 6, 10$ are subtracted from the payment.

Overall, we show you 5 decision situations in the second dice game. The

amounts are different in each situation. In the end, only one choice (of the

second dice game and the other games) will be selected by the computer —

this one determines the payment. You should therefore always choose the

option you prefer.

For entering your choice, please click the button “L” or “R”. There is

no confirmation ensued. If you have no more questions, you can start by

clicking “Next”.

Control Questions
If you have selected the following option, which one is the smallest amount

possible?

-20 28 68

...and which one is the largest amount possible?

68 88 108
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F.1.4 Risk Apportionment: Prudence (Fortune-Wheel-Design; Deck and
Schlesinger, 2014).

First screen
1. wheel of fortune game

In the first wheel of fortune game, a wheel of fortune is turned (resp.

the turn is simulated by the computer). This determines the payment in

this game. Again, you can choose between two options, “Option A” and

“Option B”. Each option involves amounts of money and one or more 50-

50 lotteries represented as a circle with a line through the middle. A 50-50

lottery means there is a 50For example, is a 50-50 lottery in

which you can receive either 10$ or 24$; each with an equal chance. If the

wheel of fortune stops at the right side, you would receive 24$. If it stops at

the left side, you would receive 10$.

In some cases, one of the items in a 50-50 lottery may be another lot-

tery. For example, is such a lottery. Here, you would

receive either 50$ or 100$ plus the lottery .

Further explanations are given on the next page.

Second Screen

In the example , there is a 50There is also a 50Con-

ditional on this outcome for the big 50-50 lottery, you would then have a

50Therefore, the chance that you would end up with 100$+20$ = 120$ is
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0,5 * 0,5 = 0,25 = 25%. The chance that you would end up with 100$-20$

= 80$ also is 0,5 * 0,5 = 0,25 = 25%.

Overall, we show you 5 decision situations in the first wheel of fortune

game. The amounts are different in each situation. In the end, only one

choice (of the first wheel of fortune game and the other games) will be

selected by the computer — this one determines the payment. You should

therefore always choose the option you prefer.

For entering your choice, please click the button “A” or “B”. There is

no confirmation ensued. If you have no more questions, you can start by

clicking “Next”.

Exemplary Decision Situation

F.1.5 Risk Apportionment: Temperance (Fortune-Wheel-Design; Deck and
Schlesinger, 2014).

First Screen
2. wheel of fortune game

In the second wheel of fortune game, wheels of fortune are turned, too

(resp. the turns are simulated by the computer). However, further lotteries
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are added: is a 50-50 lottery where you

receive either 28$ plus the 50-50 lottery or you receive 48$

plus the 50-50 lottery , both of which include an additional

50-50 lottery.

Further explanations are given on the next page.

Second Screen

In you could earn 40$ if you get 28$ +
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in the big lottery and then earn 20$ in the middle lot-

tery and -8$ in the small lottery. This occurs with a 0,5 * 0,5 * 0,5 = 12,5%

chance. Whereas if you receive 8$ in the small lottery, you could earn 56$.

This also occurs with a 12,5% chance. With a 50Notice that you could earn

68$ by 1) earning 28$ in the big lottery and then 40$ in the middle lottery or

2) by earning 48$ in the big lottery and 20$ in the middle lottery. Both hap-

pens with a 0,5 * 0,5 = 25% chance, therefore 25% + 25% = 50%. Besides,

you could receive either 80$ or 96$ with a 0,5 * 0,5 * 0,5 = 12,5% chance for

each by earning 48$ in the big lottery first, then 40$ in the middle lottery

and afterwards -8$ resp. 8$ in the small lottery.

Overall, we show you 5 decision situations in the second wheel of fortune

game. The amounts are different in each situation. In the end, only one

choice (of the second wheel of fortune game and the other games) will be

selected by the computer — this one determines the payment. You should

therefore always choose the option you prefer.

For entering your choice, please click the button “A” or “B”. There is

no confirmation ensued. If you have no more questions, you can start by

clicking “Next”.

Control Questions
If you have selected the following option, which one is the smallest amount

possible?

-10 0 50

And which one is the largest amount possible?

85 110 120
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Exemplary Decision Situation

F.1.6 Risk Apportionment with Compensation: Prudence (Urn-Design; Ebert and
Wiesen, 2014).

First Screen
1. urn game

In the first urn game, it is drawn from different urns (resp. the draw is

simulated by the computer). So these are also decision situations in which

coincidence plays a part. Therefore, in these situations the outcome is un-

certain again.

Again, you choose between two options with random outcome. The op-

tions are described and explained in detail later. Overall, there are 60 deci-

sions in the first urn game and 40 decisions in the second urn game which ap-

proximately correspond with five decision situations in the previous games.

In the end, only one choice (of the urn game and the other games) will be

selected by the computer — this one determines the payment. You should

therefore always choose the option you prefer.

Further explanations are given on the next page.

Second Screen
The following figure describes the decision situations in the urn games

schematically and simplified.
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In each decision situation, you decide which of the two risky events, “Op-

tion A” or “Option B”, you prefer. Both options, “Option A” and “Option

B”, comprise a random draw (RANDOM DRAW 1) that is depicted as an

urn with two balls “Up” and “Down”. RANDOM DRAW 1 is: With a 50%

chance you are in situation “Up” and with 50% chance you are in situation

“Down”.

We now look at the risky event “Option A”. If ball “Up” is drawn,

the outcome is X. X can either be a fixed amount or another random draw

(RANDOM DRAW X). If ball “Down” is drawn, the outcome is Y. Likewise,

Y can either be a fixed amount or another random draw (RANDOM DRAW

Y).

In risky event “Option B”, both X and Y follow if ball “Up” is drawn.

In addition, an amount (blue bank note) is added to the outcome in both

situations. If ball “Down” is drawn, you receive the amount indicated on

the bank note. If ball “Up” is drawn, X and Y follow and the amount (blue

bank note) is added.

The amount on the blue bank note can take the following values:

-11,25, -10.13, -9.00, ..., -1.13, 0.00, 1.13, ..., 9.00, 10.13.

Hence, for each of these 20 amounts, one decision situation with two risky

events follows. The amount on the blue bank note is always added to both

situations (“Up” and “Down”).

Note that on your decision screens, the risky event where the amount

(blue bank note) is added can either be the right or the left option.

Further explanations are given on the next page.

Third Screen
In the first urn game, you make 60 decisions. These are displayed in three
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decision situations and each situation comprises 20 decisions between two

options – “Option A” and “Option B”.

The following figure describes an example of a decision situation in the

first urn game.

In this example, the amount (blue bank note) is added to Option A. The

size of the added amount can be found in the column amount on the right-

hand side of the screen. For each amount, you decide whether you prefer

Option A or Option B by clicking on the respective blue button under the

option. The green frame in the right chart helps you to overview how you

have decided for which amount. Aside from the amounts on the bank notes,

the decision situation is the same for all 20 amounts that are displayed on

the right.

How is the payment determined in the first urn game?

For RANDOM DRAW 1, there are two balls in an urn – one with label ‘Up”,

another with label “Down”. Both balls can be drawn with the same chance.

As shown in the figure above, a second random draw (RANDOM DRAW

X ) can be necessary to determine your payoff. In RANDOM DRAW X, a

ball is drawn from an urn containing 10 balls. The ball can either be blue

or orange. Note that the composition of blue and orange balls can change

in the three decision situations. The urn always contains 10 balls, and for

20 decisions the composition of blue and orange balls is identical.

Further explanations are given on the next page.

Fourth Screen
We now look at a concrete example of the recent decision situation:
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If in Option A in RANDOM DRAW 1 ball “Up” is drawn, the outcome

is 67.5, RANDOM DRAW X follows and -11.25 (amount on the blue bank

note) is added (therefore, 11.25 is subtracted).

� If in RANDOM DRAW X an orange ball is drawn, you lose 31.50. Over-

all, you receive 24.75 (=67.50 - 31.50 - 11.25) in that case.

� If in RANDOM DRAW X a blue ball is drawn, you win 31.50. Overall,

you receive 87.75 (=67.50 + 31.50 - 11.25)in that case.

If in Option A in RANDOM DRAW 1 ball “Down” is drawn, the out-

come is 90.00, and -11.25 (amount on the blue bank note) is added (there-

fore, 11.25 is subtracted). Overall, you receive 87.75 (=90.00 - 11.25) in that

case.

If in Option B in RANDOM DRAW 1 ball “Up” is drawn, the outcome

is 90.00, and RANDOM DRAW X follows.

� If in RANDOM DRAW X an orange ball is drawn, you lose 31.50. Over-

all, you receive 58.50 (=90 - 31.50) in that case.

� If in RANDOM DRAW X a blue ball is drawn, you win 31.50. Overall,

you receive 121.50 (=90 + 31.50) in that case.

If in Option B in RANDOM DRAW 1 ball “Down” is drawn, the outcome

is 67.50.
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Table 19. Risk Apportionment Tasks for Elicitation of Prudence and Temperance

Prudence: Fortune-Wheel- and Die-Design
Original Task Construction Scale Option A Option B
D&S 11 – x10 [$50 + [$− 20, $20], $100] [$50, $100 + [$− 20, $20]]
D&S 13 – x10 [$50 + [$− 40, $40], $100] [$50, $100 + [$− 40, $40]]
D&S 14 – x10 [$20 + [$10, $− 10], $40] [$20, $40 + [$10, $− 10]]
D&S 16 – x10 [$80 + [$20, $− 20], $100] [$80, $100 + [$20, $− 20]]
D&S 17 – x10 [$120 + [$10, $− 10], $140] [$120, $140 + [$10, $− 10]]

Temperance: Fortune-Wheel-Design
Original Task Construction Scale Option A Option B
D&S 18 2+2 x1 [[$14, $20] + [$14, $20], [$10, $24] + [$10, $24]] [[$10, $24] + [$14, $20], [$14, $20] + [$10, $24]]
D&S 19 2+2 x5 [[$35, $50] + [$35, $50], [$25, $60] + [$25, $60]] [[$25, $60] + [$35, $50], [$35, $50] + [$25, $60]]
D&S 21 2+2 x5 [[$5, $80] + [$5, $80], [$25, $60] + [$25, $60]] [[$25, $60] + [$5, $80], [$5, $80] + [$25, $60]]
D&S 22 1+3 x2 [$28 + [$20 + [$− 8, $8], $40], $48 + [$20, $40 + [$− 8, $8]]] [$28 + [$20, $40 + [$− 8, $8]], $48 + [$20 + [$− 8, $8], $40]]
D&S 23 1+3 x5 [$35 + [$25 + [$− 10, $10], $50], $60 + [$25, $50 + [$− 10, $10]]] [$35 + [$25, $50 + [$− 10, $10]], $60 + [$25 + [$− 10, $10], $50]]
Temperance: Die-Design
Original Task Construction Scale Option A Option B
NTvdK 1 [$85, $85 + [$25, $− 25] + [$25, $− 25]] [$85 + [$25, $− 25], $85 + [$25, $− 25]]
NTvdK 2 [$85, $85 + [$25, $− 25] + [$10, $− 10]] [$85 + [$25, $− 25], $85 + [$10,−$10]]
NTvdK 3 [$85, $85 + [$50, $− 50] + [$25, $− 25]] [$85 + [$50, $− 50], $85 + [$25, $− 25]]
NTvdK 4 [$34, $34 + [$10, $− 10] + [$10, $− 10]] [$34 + [$10, $− 10], $34 + [$10, $− 10]]
NTvdK 5 [$68, $68 + [$20, $− 20] + [$20, $− 20]] [$68 + [$20, $− 20], $68 + [$20, $− 20]]

Notes: As in Deck and Schlesinger (2014), [x,y] denotes a 50-50 lottery with equally likely outcomes x and y. Original Task refers to the Task Number
given in Deck and Schlesinger (2014) and Scale informs about the scaling parameter that we used to obtain Options A and B from the original tasks
as in Deck and Schlesinger (2014).
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F.1.7 Risk Apportionment with Compensation: Temperance (Urn-Design; Ebert
and Wiesen, 2014).

First Screen
2. urn game

In the second urn game, it is drawn from different urns, too (resp. the

draw is simulated by the computer). So these are also decision situations

in which coincidence plays a part and in which the outcome is uncertain.

In the second urn game, you make 40 decisions. These are displayed in two

decision situations and each situation comprises 20 decisions between two

options – “Option A” and “Option B”.

The following figure describes an example of a decision situation in the

second urn game.

In this example, the amount (blue bank note) is added to Option B. The

size of the added amount can be found in the column amount on the right-

hand side of the screen. For each amount you decide whether you prefer

Option A or Option B by clicking on the respective blue button under the

option. The green frame in the right chart helps you to overview how you

have decided for which amount. Aside from the amounts on the bank notes,

the decision situation is the same for all 20 amounts that are displayed on

the right.

How is the payment determined in the second urn game?

For RANDOM DRAW 1, there are two balls in an urn – one with label

“Up”, another with label “Down”. Both balls can be drawn with the same

chance (analogous to the first urn game). As shown in the figure above, a

second random draw (RANDOM DRAW X ) and/or a third random draw

(RANDOM DRAW Y can be necessary to determine your payoff. In RAN-

DOM DRAW X, a ball is drawn from an urn containing 10 balls. The ball

can either be blue or orange. Note that the composition of blue and orange
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balls can change in the decision situations. The urn always contains 10 balls,

and for 20 decisions the composition of blue and orange balls is identical.

This holds analogously for RANDOM DRAW Y. Notice that the composi-

tion of blue and orange balls across RANDOM DRAW X and RANDOM

DRAW Y can differ.

Further explanations are given on the next page.

Second Screen
We now look at a concrete example of the recent decision situation:

If in Option A in RANDOM DRAW 1 ball ”Up” is drawn, the outcome

is 78.75, and RANDOM DRAW X follows.

� If in RANDOM DRAW X an orange ball is drawn, you lose 31.50. Over-

all, you receive 47.25 (=78.75 - 31.50) in that case.

� If in RANDOM DRAW X a blue ball is drawn, you win 31.50. Overall,

you receive 110.25 (=78.75 + 31.50) in that case.

If in RANDOM DRAW 1 ball ”Down” is drawn, the outcome is 78.75

and RANDOM DRAW Y follows.

� If in RANDOM DRAW Y an orange ball is drawn, you lose 15.75. Over-

all, you receive 63 (=78.75 - 15.75) in that case.

� If in RANDOM DRAW Y a blue ball is drawn, you win 15.75. Overall,

you receive 94.5 (=78.75 + 15.75) in that case.

On the next page, the calculation of outcomes for Option B follows.

Third Screen
Now to the calculation of payments in Option B in the recent example of a

decision situation:
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If in Option B in RANDOM DRAW 1 ball “Up” is drawn, the outcome

is 78.75, RANDOM DRAW X and RANDOM DRAW Y follow, and -11.25

(amount on the blue bank note) is added (therefore, 11.25 is subtracted).

� If in RANDOM DRAW X and in RANDOM DRAW Y an orange ball

is drawn, you lose 31.50 (from RANDOM DRAW X) and 15.75 (from

RANDOM DRAW Y). Overall, you receive 20.25 (=78.75 - 31.50 - 15.75

-11.25) in that case.

� If in RANDOM DRAW X and in RANDOM DRAW Y a blue ball is

drawn, you win 31.50 (from RANDOM DRAW X) and 15.75 (from RAN-

DOM DRAW Y). Overall, you receive 123.75 (=78.75 + 31.50 + 15.75 -

11.25) in that case.

� If in RANDOM DRAW X a blue ball and in RANDOM DRAW Y an

orange ball is drawn, you win 31.50 (from RANDOM DRAW X) and lose

15.75 (from RANDOM DRAW Y). Overall, you receive 83.25 (=78.75 +

31.50 - 15.75 - 11.25) in that case.

� If in RANDOM DRAW X an orange ball and in RANDOM DRAW Y a

blue ball is drawn, you lose 31.50 (from RANDOM DRAW X) and win

15.75 (from RANDOM DRAW Y). Overall, you receive 51.75 (=78.75 -

31.50 + 15.75 - 11.25) in that case.

If in Option B in RANDOM DRAW 1 ball “Down” is drawn, the out-

come is 78.75, and -11.25 (amount on the blue bank note) is added (there-

fore, 11.25 is subtracted). Overall, you receive 67.5 (=78.75 - 11.25) in that

case.

On the next page, you are asked some comprehension questions.

Control Questions
If you have selected the following option, which one is the smallest amount
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possible?

-49,95 -11,25 4,95

And which one is the largest amount possible?

67,5 78,75 130,05
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F.2 Real-E�ort Tasks
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